Spaces:
Running
Running
Update appImage.py
Browse files- appImage.py +5 -158
appImage.py
CHANGED
@@ -1,134 +1,5 @@
|
|
1 |
-
"""import gradio as gr
|
2 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
-
from PIL import Image
|
4 |
-
import torch
|
5 |
-
from fastapi import FastAPI
|
6 |
-
from fastapi.responses import RedirectResponse
|
7 |
-
|
8 |
-
# Initialize FastAPI
|
9 |
-
app = FastAPI()
|
10 |
-
|
11 |
-
# Load models - Using microsoft/git-large-coco
|
12 |
-
try:
|
13 |
-
# Load the better model
|
14 |
-
processor = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
15 |
-
git_model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
|
16 |
-
print("Successfully loaded microsoft/git-large-coco model")
|
17 |
-
USE_GIT = True
|
18 |
-
except Exception as e:
|
19 |
-
print(f"Failed to load GIT model: {e}. Falling back to smaller model")
|
20 |
-
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
21 |
-
USE_GIT = False
|
22 |
-
|
23 |
-
def generate_caption(image_path):
|
24 |
-
"Generate caption using the best available model""
|
25 |
-
try:
|
26 |
-
if USE_GIT:
|
27 |
-
image = Image.open(image_path)
|
28 |
-
inputs = processor(images=image, return_tensors="pt")
|
29 |
-
outputs = git_model.generate(**inputs, max_length=50)
|
30 |
-
return processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
31 |
-
else:
|
32 |
-
result = captioner(image_path)
|
33 |
-
return result[0]['generated_text']
|
34 |
-
except Exception as e:
|
35 |
-
print(f"Caption generation error: {e}")
|
36 |
-
return "Could not generate caption"
|
37 |
-
|
38 |
-
def process_image(file_path: str):
|
39 |
-
"Handle image processing for Gradio interface"
|
40 |
-
if not file_path:
|
41 |
-
return "Please upload an image first"
|
42 |
-
|
43 |
-
try:
|
44 |
-
caption = generate_caption(file_path)
|
45 |
-
return f"📷 Image Caption:\n{caption}"
|
46 |
-
except Exception as e:
|
47 |
-
return f"Error processing image: {str(e)}"
|
48 |
-
|
49 |
-
# Gradio Interface
|
50 |
-
with gr.Blocks(title="Image Captioning Service", theme=gr.themes.Soft()) as demo:
|
51 |
-
gr.Markdown("# 🖼️ Image Captioning Service")
|
52 |
-
gr.Markdown("Upload an image to get automatic captioning")
|
53 |
-
|
54 |
-
with gr.Row():
|
55 |
-
with gr.Column():
|
56 |
-
image_input = gr.Image(label="Upload Image", type="filepath")
|
57 |
-
analyze_btn = gr.Button("Generate Caption", variant="primary")
|
58 |
-
|
59 |
-
with gr.Column():
|
60 |
-
output = gr.Textbox(label="Caption Result", lines=5)
|
61 |
-
|
62 |
-
analyze_btn.click(
|
63 |
-
fn=process_image,
|
64 |
-
inputs=[image_input],
|
65 |
-
outputs=[output]
|
66 |
-
)
|
67 |
-
|
68 |
-
# Mount Gradio app to FastAPI
|
69 |
-
app = gr.mount_gradio_app(app, demo, path="/")
|
70 |
-
|
71 |
-
@app.get("/")
|
72 |
-
def redirect_to_interface():
|
73 |
-
return RedirectResponse(url="/")
|
74 |
-
"""
|
75 |
-
import gradio as gr
|
76 |
-
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline
|
77 |
-
from PIL import Image
|
78 |
-
import torch
|
79 |
-
from fastapi import FastAPI, UploadFile, Form
|
80 |
-
from fastapi.responses import RedirectResponse, JSONResponse, FileResponse
|
81 |
-
from fastapi.middleware.cors import CORSMiddleware
|
82 |
-
import os
|
83 |
-
import tempfile
|
84 |
-
|
85 |
-
# ✅ Initialize FastAPI
|
86 |
-
app = FastAPI()
|
87 |
-
|
88 |
-
# ✅ Enable CORS (so frontend JS can call backend)
|
89 |
-
app.add_middleware(
|
90 |
-
CORSMiddleware,
|
91 |
-
allow_origins=["*"],
|
92 |
-
allow_credentials=True,
|
93 |
-
allow_methods=["*"],
|
94 |
-
allow_headers=["*"],
|
95 |
-
)
|
96 |
-
|
97 |
-
# ✅ Load caption model
|
98 |
-
USE_GIT = False
|
99 |
-
try:
|
100 |
-
processor = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
101 |
-
git_model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
|
102 |
-
git_model.eval()
|
103 |
-
USE_GIT = True
|
104 |
-
except Exception as e:
|
105 |
-
print(f"[INFO] Falling back to ViT: {e}")
|
106 |
-
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
107 |
-
|
108 |
-
# ✅ Image captioning logic
|
109 |
-
def generate_caption(image_path: str) -> str:
|
110 |
-
try:
|
111 |
-
if USE_GIT:
|
112 |
-
image = Image.open(image_path).convert("RGB")
|
113 |
-
inputs = processor(images=image, return_tensors="pt")
|
114 |
-
outputs = git_model.generate(**inputs, max_length=50)
|
115 |
-
caption = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
116 |
-
else:
|
117 |
-
result = captioner(image_path)
|
118 |
-
caption = result[0]['generated_text']
|
119 |
-
return caption
|
120 |
-
except Exception as e:
|
121 |
-
return f"Error: {str(e)}"
|
122 |
-
|
123 |
-
# ✅ For Gradio demo
|
124 |
-
def process_image(file_path: str):
|
125 |
-
if not file_path:
|
126 |
-
return "Please upload an image."
|
127 |
-
return f"📷 Image Caption:\n{generate_caption(file_path)}"
|
128 |
-
|
129 |
-
# ✅ FastAPI endpoint for frontend POSTs
|
130 |
@app.post("/imagecaption/")
|
131 |
-
async def caption_from_frontend(file: UploadFile
|
132 |
try:
|
133 |
# Save temp image
|
134 |
contents = await file.read()
|
@@ -138,39 +9,15 @@ async def caption_from_frontend(file: UploadFile, question: str = Form("")):
|
|
138 |
|
139 |
caption = generate_caption(tmp_path)
|
140 |
|
141 |
-
#
|
142 |
-
from gtts import gTTS
|
143 |
audio_path = os.path.join(tempfile.gettempdir(), file.filename + ".mp3")
|
144 |
tts = gTTS(text=caption)
|
145 |
tts.save(audio_path)
|
146 |
|
147 |
-
return {
|
148 |
"answer": caption,
|
149 |
"audio": f"/files/{os.path.basename(audio_path)}"
|
150 |
-
}
|
151 |
|
152 |
except Exception as e:
|
153 |
-
return JSONResponse({"error": str(e)}, status_code=500)
|
154 |
-
|
155 |
-
# ✅ Serve static files
|
156 |
-
@app.get("/files/{file_name}")
|
157 |
-
async def serve_file(file_name: str):
|
158 |
-
path = os.path.join(tempfile.gettempdir(), file_name)
|
159 |
-
if os.path.exists(path):
|
160 |
-
return FileResponse(path)
|
161 |
-
return JSONResponse({"error": "File not found"}, status_code=404)
|
162 |
-
|
163 |
-
# ✅ Mount Gradio demo for test
|
164 |
-
with gr.Blocks(title="🖼️ Image Captioning") as demo:
|
165 |
-
gr.Markdown("# 🖼️ Image Captioning Demo")
|
166 |
-
image_input = gr.Image(type="filepath", label="Upload Image")
|
167 |
-
result_box = gr.Textbox(label="Caption")
|
168 |
-
btn = gr.Button("Generate Caption")
|
169 |
-
btn.click(fn=process_image, inputs=[image_input], outputs=[result_box])
|
170 |
-
|
171 |
-
app = gr.mount_gradio_app(app, demo, path="/")
|
172 |
-
|
173 |
-
# ✅ Optional root redirect to frontend
|
174 |
-
@app.get("/")
|
175 |
-
def redirect_to_frontend():
|
176 |
-
return RedirectResponse(url="/templates/home.html")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
@app.post("/imagecaption/")
|
2 |
+
async def caption_from_frontend(file: UploadFile):
|
3 |
try:
|
4 |
# Save temp image
|
5 |
contents = await file.read()
|
|
|
9 |
|
10 |
caption = generate_caption(tmp_path)
|
11 |
|
12 |
+
# Generate audio
|
|
|
13 |
audio_path = os.path.join(tempfile.gettempdir(), file.filename + ".mp3")
|
14 |
tts = gTTS(text=caption)
|
15 |
tts.save(audio_path)
|
16 |
|
17 |
+
return JSONResponse({
|
18 |
"answer": caption,
|
19 |
"audio": f"/files/{os.path.basename(audio_path)}"
|
20 |
+
})
|
21 |
|
22 |
except Exception as e:
|
23 |
+
return JSONResponse({"error": str(e)}, status_code=500)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|