Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,197 +1,19 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
-
import fitz # PyMuPDF
|
4 |
-
import docx
|
5 |
-
import pptx
|
6 |
-
import openpyxl
|
7 |
-
import re
|
8 |
-
import nltk
|
9 |
-
from nltk.tokenize import sent_tokenize
|
10 |
-
import torch
|
11 |
-
from fastapi import FastAPI, UploadFile, Form, File
|
12 |
-
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
|
13 |
-
from fastapi.middleware.cors import CORSMiddleware
|
14 |
-
from gtts import gTTS
|
15 |
-
import tempfile
|
16 |
-
import os
|
17 |
-
import shutil
|
18 |
-
import easyocr
|
19 |
-
from fpdf import FPDF
|
20 |
-
import datetime
|
21 |
-
from concurrent.futures import ThreadPoolExecutor
|
22 |
-
import hashlib
|
23 |
-
|
24 |
-
nltk.download('punkt', quiet=True)
|
25 |
-
|
26 |
-
app = FastAPI()
|
27 |
-
|
28 |
-
app.add_middleware(
|
29 |
-
CORSMiddleware,
|
30 |
-
allow_origins=["*"],
|
31 |
-
allow_credentials=True,
|
32 |
-
allow_methods=["*"],
|
33 |
-
allow_headers=["*"],
|
34 |
-
)
|
35 |
-
|
36 |
-
MODEL_NAME = "facebook/bart-large-cnn"
|
37 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
38 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
39 |
-
model.eval()
|
40 |
-
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)
|
41 |
-
|
42 |
-
reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
|
43 |
-
executor = ThreadPoolExecutor()
|
44 |
-
|
45 |
-
summary_cache = {}
|
46 |
-
|
47 |
-
def clean_text(text: str) -> str:
|
48 |
-
text = re.sub(r'\s+', ' ', text)
|
49 |
-
text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
|
50 |
-
text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
|
51 |
-
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
|
52 |
-
return text.strip()
|
53 |
-
|
54 |
-
def extract_text(file_path: str, file_extension: str):
|
55 |
-
try:
|
56 |
-
if file_extension == "pdf":
|
57 |
-
with fitz.open(file_path) as doc:
|
58 |
-
text = "\n".join(page.get_text("text") for page in doc)
|
59 |
-
if len(text.strip()) < 50:
|
60 |
-
images = [page.get_pixmap() for page in doc]
|
61 |
-
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
62 |
-
images[0].save(temp_img.name)
|
63 |
-
ocr_result = reader.readtext(temp_img.name, detail=0)
|
64 |
-
os.unlink(temp_img.name)
|
65 |
-
text = "\n".join(ocr_result) if ocr_result else text
|
66 |
-
return clean_text(text), ""
|
67 |
-
|
68 |
-
elif file_extension == "docx":
|
69 |
-
doc = docx.Document(file_path)
|
70 |
-
return clean_text("\n".join(p.text for p in doc.paragraphs)), ""
|
71 |
-
|
72 |
-
elif file_extension == "pptx":
|
73 |
-
prs = pptx.Presentation(file_path)
|
74 |
-
text = [shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")]
|
75 |
-
return clean_text("\n".join(text)), ""
|
76 |
-
|
77 |
-
elif file_extension == "xlsx":
|
78 |
-
wb = openpyxl.load_workbook(file_path, read_only=True)
|
79 |
-
text = [" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)]
|
80 |
-
return clean_text("\n".join(text)), ""
|
81 |
-
|
82 |
-
elif file_extension in ["jpg", "jpeg", "png"]:
|
83 |
-
ocr_result = reader.readtext(file_path, detail=0)
|
84 |
-
return clean_text("\n".join(ocr_result)), ""
|
85 |
-
|
86 |
-
return "", "Unsupported file format"
|
87 |
-
except Exception as e:
|
88 |
-
return "", f"Error reading {file_extension.upper()} file: {str(e)}"
|
89 |
-
|
90 |
-
def chunk_text(text: str, max_tokens: int = 950):
|
91 |
-
try:
|
92 |
-
sentences = sent_tokenize(text)
|
93 |
-
except:
|
94 |
-
words = text.split()
|
95 |
-
sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)]
|
96 |
-
|
97 |
-
chunks = []
|
98 |
-
current_chunk = ""
|
99 |
-
for sentence in sentences:
|
100 |
-
token_length = len(tokenizer.encode(current_chunk + " " + sentence))
|
101 |
-
if token_length <= max_tokens:
|
102 |
-
current_chunk += " " + sentence
|
103 |
-
else:
|
104 |
-
chunks.append(current_chunk.strip())
|
105 |
-
current_chunk = sentence
|
106 |
-
|
107 |
-
if current_chunk:
|
108 |
-
chunks.append(current_chunk.strip())
|
109 |
-
|
110 |
-
return chunks
|
111 |
-
|
112 |
-
def generate_summary(text: str, length: str = "medium") -> str:
|
113 |
-
cache_key = hashlib.md5((text + length).encode()).hexdigest()
|
114 |
-
if cache_key in summary_cache:
|
115 |
-
return summary_cache[cache_key]
|
116 |
-
|
117 |
-
length_params = {
|
118 |
-
"short": {"max_length": 80, "min_length": 30},
|
119 |
-
"medium": {"max_length": 200, "min_length": 80},
|
120 |
-
"long": {"max_length": 300, "min_length": 210}
|
121 |
-
}
|
122 |
-
chunks = chunk_text(text)
|
123 |
-
try:
|
124 |
-
summaries = summarizer(
|
125 |
-
chunks,
|
126 |
-
max_length=length_params[length]["max_length"],
|
127 |
-
min_length=length_params[length]["min_length"],
|
128 |
-
do_sample=False,
|
129 |
-
truncation=True,
|
130 |
-
no_repeat_ngram_size=2,
|
131 |
-
num_beams=2,
|
132 |
-
early_stopping=True
|
133 |
-
)
|
134 |
-
summary_texts = [s['summary_text'] for s in summaries]
|
135 |
-
except Exception as e:
|
136 |
-
summary_texts = [f"[Batch error: {str(e)}]"]
|
137 |
-
|
138 |
-
final_summary = " ".join(summary_texts)
|
139 |
-
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
|
140 |
-
final_summary = final_summary if len(final_summary) > 25 else "Summary too short - document may be too brief"
|
141 |
-
|
142 |
-
summary_cache[cache_key] = final_summary
|
143 |
-
return final_summary
|
144 |
-
|
145 |
-
def text_to_speech(text: str):
|
146 |
-
try:
|
147 |
-
tts = gTTS(text)
|
148 |
-
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
149 |
-
tts.save(temp_audio.name)
|
150 |
-
return temp_audio.name
|
151 |
-
except Exception as e:
|
152 |
-
print(f"Error in text-to-speech: {e}")
|
153 |
-
return ""
|
154 |
-
|
155 |
-
def create_pdf(summary: str, original_filename: str):
|
156 |
-
try:
|
157 |
-
pdf = FPDF()
|
158 |
-
pdf.add_page()
|
159 |
-
pdf.set_font("Arial", size=12)
|
160 |
-
pdf.set_font("Arial", 'B', 16)
|
161 |
-
pdf.cell(200, 10, txt="Document Summary", ln=1, align='C')
|
162 |
-
pdf.set_font("Arial", size=12)
|
163 |
-
pdf.cell(200, 10, txt=f"Original file: {original_filename}", ln=1)
|
164 |
-
pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1)
|
165 |
-
pdf.ln(10)
|
166 |
-
pdf.multi_cell(0, 10, txt=summary)
|
167 |
-
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
168 |
-
pdf.output(temp_pdf.name)
|
169 |
-
return temp_pdf.name
|
170 |
-
except Exception as e:
|
171 |
-
print(f"Error creating PDF: {e}")
|
172 |
-
return ""
|
173 |
-
|
174 |
@app.post("/summarize/")
|
175 |
async def summarize_api(file: UploadFile = File(...), length: str = Form("medium")):
|
176 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp:
|
177 |
shutil.copyfileobj(file.file, temp)
|
178 |
temp.flush()
|
179 |
class FileObj: name = temp.name
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
"summary": summary,
|
184 |
"audio_url": f"/files/{os.path.basename(audio_path)}" if audio_path else None,
|
185 |
"pdf_url": f"/files/{os.path.basename(pdf_path)}" if pdf_path else None
|
186 |
-
}
|
187 |
-
|
188 |
-
@app.get("/files/{file_name}")
|
189 |
-
async def get_file(file_name: str):
|
190 |
-
file_path = os.path.join(tempfile.gettempdir(), file_name)
|
191 |
-
if os.path.exists(file_path):
|
192 |
-
return FileResponse(file_path)
|
193 |
-
return JSONResponse({"error": "File not found"}, status_code=404)
|
194 |
-
|
195 |
-
@app.get("/")
|
196 |
-
def redirect_to_interface():
|
197 |
-
return RedirectResponse(url="/")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
@app.post("/summarize/")
|
2 |
async def summarize_api(file: UploadFile = File(...), length: str = Form("medium")):
|
3 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp:
|
4 |
shutil.copyfileobj(file.file, temp)
|
5 |
temp.flush()
|
6 |
class FileObj: name = temp.name
|
7 |
+
text, error = extract_text(FileObj.name, os.path.splitext(file.filename)[1][1:].lower())
|
8 |
+
if error:
|
9 |
+
return JSONResponse({"error": error}, status_code=400)
|
10 |
+
|
11 |
+
summary = generate_summary(text, length)
|
12 |
+
audio_path = text_to_speech(summary)
|
13 |
+
pdf_path = create_pdf(summary, file.filename)
|
14 |
+
|
15 |
+
return JSONResponse({
|
16 |
"summary": summary,
|
17 |
"audio_url": f"/files/{os.path.basename(audio_path)}" if audio_path else None,
|
18 |
"pdf_url": f"/files/{os.path.basename(pdf_path)}" if pdf_path else None
|
19 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|