File size: 8,568 Bytes
130c582
551e732
130c582
 
 
 
 
551e732
130c582
551e732
130c582
fe437cb
9b32604
 
 
 
315a442
 
231ece3
d9c0a34
130c582
f895e21
130c582
551e732
 
 
 
 
d9c0a34
1f58079
130c582
d9c0a34
231ece3
 
d9c0a34
 
130c582
c98b8c8
1f58079
c98b8c8
 
130c582
 
bef3ff2
130c582
551e732
 
9b32604
 
 
 
 
bef3ff2
9b32604
 
 
c98b8c8
551e732
 
 
c98b8c8
551e732
 
c98b8c8
551e732
c98b8c8
551e732
 
c98b8c8
551e732
c98b8c8
9b32604
bef3ff2
9b32604
c98b8c8
551e732
130c582
551e732
 
1f58079
551e732
 
 
 
 
c98b8c8
551e732
 
 
231ece3
 
551e732
 
 
 
c98b8c8
551e732
 
c98b8c8
551e732
130c582
551e732
d9c0a34
 
 
 
130c582
 
b6260fc
a0e7ad2
130c582
551e732
1f58079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
551e732
d9c0a34
 
 
 
551e732
c98b8c8
9b32604
 
 
 
 
 
 
 
 
c98b8c8
315a442
 
 
 
 
 
 
bef3ff2
315a442
 
 
 
 
 
 
 
 
 
c98b8c8
551e732
c98b8c8
551e732
 
315a442
bef3ff2
551e732
c98b8c8
551e732
c98b8c8
551e732
f895e21
9b32604
fe437cb
c98b8c8
130c582
c98b8c8
130c582
551e732
bef3ff2
c98b8c8
 
130c582
 
 
 
9b32604
130c582
 
 
 
 
 
 
551e732
c98b8c8
130c582
551e732
c98b8c8
315a442
c98b8c8
 
 
fe437cb
 
c98b8c8
fe437cb
 
c98b8c8
551e732
c98b8c8
 
 
551e732
130c582
315a442
 
9b32604
 
315a442
9b32604
 
145f8e8
130c582
 
551e732
bef3ff2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import fitz  # PyMuPDF
import docx
import pptx
import openpyxl
import re
import nltk
from nltk.tokenize import sent_tokenize
import torch
from fastapi import FastAPI
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
from gtts import gTTS
import tempfile
import os
import easyocr
from fpdf import FPDF
import datetime
from concurrent.futures import ThreadPoolExecutor
import hashlib

nltk.download('punkt', quiet=True)

app = FastAPI()

MODEL_NAME = "facebook/bart-large-cnn"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
model.eval()
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)

reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
executor = ThreadPoolExecutor()

summary_cache = {}

def clean_text(text: str) -> str:
    text = re.sub(r'\s+', ' ', text)
    text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
    text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
    text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
    return text.strip()

def extract_text(file_path: str, file_extension: str):
    try:
        if file_extension == "pdf":
            with fitz.open(file_path) as doc:
                text = "\n".join(page.get_text("text") for page in doc)
                if len(text.strip()) < 50:
                    images = [page.get_pixmap() for page in doc]
                    temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
                    images[0].save(temp_img.name)
                    ocr_result = reader.readtext(temp_img.name, detail=0)
                    os.unlink(temp_img.name)
                    text = "\n".join(ocr_result) if ocr_result else text
                return clean_text(text), ""

        elif file_extension == "docx":
            doc = docx.Document(file_path)
            return clean_text("\n".join(p.text for p in doc.paragraphs)), ""

        elif file_extension == "pptx":
            prs = pptx.Presentation(file_path)
            text = [shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")]
            return clean_text("\n".join(text)), ""

        elif file_extension == "xlsx":
            wb = openpyxl.load_workbook(file_path, read_only=True)
            text = [" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)]
            return clean_text("\n".join(text)), ""

        elif file_extension in ["jpg", "jpeg", "png"]:
            ocr_result = reader.readtext(file_path, detail=0)
            return clean_text("\n".join(ocr_result)), ""

        return "", "Unsupported file format"
    except Exception as e:
        return "", f"Error reading {file_extension.upper()} file: {str(e)}"

def chunk_text(text: str, max_tokens: int = 950):
    try:
        sentences = sent_tokenize(text)
    except:
        words = text.split()
        sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)]

    chunks = []
    current_chunk = ""
    for sentence in sentences:
        token_length = len(tokenizer.encode(current_chunk + " " + sentence))
        if token_length <= max_tokens:
            current_chunk += " " + sentence
        else:
            chunks.append(current_chunk.strip())
            current_chunk = sentence

    if current_chunk:
        chunks.append(current_chunk.strip())

    return chunks

def generate_summary(text: str, length: str = "medium") -> str:
    cache_key = hashlib.md5((text + length).encode()).hexdigest()
    if cache_key in summary_cache:
        return summary_cache[cache_key]

    length_params = {
        "short": {"max_length": 80, "min_length": 30},
        "medium": {"max_length": 200, "min_length": 80},
        "long": {"max_length": 300, "min_length": 210}
    }
    chunks = chunk_text(text)
    try:
        summaries = summarizer(
            chunks,
            max_length=length_params[length]["max_length"],
            min_length=length_params[length]["min_length"],
            do_sample=False,
            truncation=True,
            no_repeat_ngram_size=2,
            num_beams=2,
            early_stopping=True
        )
        summary_texts = [s['summary_text'] for s in summaries]
    except Exception as e:
        summary_texts = [f"[Batch error: {str(e)}]"]

    final_summary = " ".join(summary_texts)
    final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
    final_summary = final_summary if len(final_summary) > 25 else "Summary too short - document may be too brief"

    summary_cache[cache_key] = final_summary
    return final_summary

def text_to_speech(text: str):
    try:
        tts = gTTS(text)
        temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
        tts.save(temp_audio.name)
        return temp_audio.name
    except Exception as e:
        print(f"Error in text-to-speech: {e}")
        return ""

def create_pdf(summary: str, original_filename: str):
    try:
        pdf = FPDF()
        pdf.add_page()
        pdf.set_font("Arial", size=12)
        pdf.set_font("Arial", 'B', 16)
        pdf.cell(200, 10, txt="Document Summary", ln=1, align='C')
        pdf.set_font("Arial", size=12)
        pdf.cell(200, 10, txt=f"Original file: {original_filename}", ln=1)
        pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1)
        pdf.ln(10)
        pdf.multi_cell(0, 10, txt=summary)
        temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
        pdf.output(temp_pdf.name)
        return temp_pdf.name
    except Exception as e:
        print(f"Error creating PDF: {e}")
        return ""

def summarize_document(file, summary_length: str, enable_tts: bool = True):
    if file is None:
        return "Please upload a document first", "", None, None
    file_path = file.name
    file_extension = file_path.split(".")[-1].lower()
    original_filename = os.path.basename(file_path)
    text, error = extract_text(file_path, file_extension)
    if error:
        return error, "", None, None
    if not text or len(text.split()) < 30:
        return "Document is too short or contains too little text to summarize", "", None, None
    try:
        summary = generate_summary(text, summary_length)
        audio_path = text_to_speech(summary) if enable_tts else None
        pdf_path = create_pdf(summary, original_filename) if summary else None
        return summary, "", audio_path, pdf_path
    except Exception as e:
        return f"Summarization error: {str(e)}", "", None, None

with gr.Blocks(title="Document Summarizer", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# πŸ“„ Advanced Document Summarizer")
    gr.Markdown("Upload a document to generate a summary with audio and optional PDF download")

    with gr.Row():
        with gr.Column():
            file_input = gr.File(
                label="Upload Document",
                file_types=[".pdf", ".docx", ".pptx", ".xlsx", ".jpg", ".jpeg", ".png"],
                type="filepath"
            )
            length_radio = gr.Radio(
                ["short", "medium", "long"],
                value="medium",
                label="Summary Length"
            )
            submit_btn = gr.Button("Generate Summary", variant="primary")

        with gr.Column():
            output = gr.Textbox(label="Summary", lines=10)
            audio_output = gr.Audio(label="Audio Summary")
            pdf_download = gr.File(label="Download Summary as PDF", visible=False)

    def summarize_and_return_ui(file, summary_length):
        summary, _, audio_path, pdf_path = summarize_document(file, summary_length)
        return (
            summary,
            audio_path,
            gr.File(visible=pdf_path is not None, value=pdf_path)
        )

    submit_btn.click(
        fn=summarize_and_return_ui,
        inputs=[file_input, length_radio],
        outputs=[output, audio_output, pdf_download]
    )

@app.get("/files/{file_name}")
async def get_file(file_name: str):
    file_path = os.path.join(tempfile.gettempdir(), file_name)
    if os.path.exists(file_path):
        return FileResponse(file_path)
    return JSONResponse({"error": "File not found"}, status_code=404)

app = gr.mount_gradio_app(app, demo, path="/")

@app.get("/")
def redirect_to_interface():
    return RedirectResponse(url="/")