Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -17,42 +17,30 @@ import easyocr
|
|
17 |
from fpdf import FPDF
|
18 |
import datetime
|
19 |
|
20 |
-
# Download required NLTK data
|
21 |
nltk.download('punkt', quiet=True)
|
22 |
|
23 |
-
# Initialize components
|
24 |
app = FastAPI()
|
25 |
|
26 |
-
# Load models
|
27 |
MODEL_NAME = "facebook/bart-large-cnn"
|
28 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
29 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
30 |
-
summarizer = pipeline(
|
31 |
-
"summarization",
|
32 |
-
model=model,
|
33 |
-
tokenizer=tokenizer,
|
34 |
-
device=-1, # Force CPU usage
|
35 |
-
torch_dtype=torch.float32
|
36 |
-
)
|
37 |
|
38 |
-
|
39 |
-
reader = easyocr.Reader(['en']) # English only for faster initialization
|
40 |
|
41 |
def clean_text(text: str) -> str:
|
42 |
-
|
43 |
-
text = re.sub(r'
|
44 |
-
text = re.sub(r'
|
45 |
-
text = re.sub(r'\
|
46 |
-
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE) # Remove page numbers
|
47 |
return text.strip()
|
48 |
|
49 |
-
def extract_text(file_path: str, file_extension: str)
|
50 |
-
"""Extract text from various document formats"""
|
51 |
try:
|
52 |
if file_extension == "pdf":
|
53 |
with fitz.open(file_path) as doc:
|
54 |
text = "\n".join(page.get_text("text") for page in doc)
|
55 |
-
# Try OCR for scanned PDFs if text extraction fails
|
56 |
if len(text.strip()) < 50:
|
57 |
images = [page.get_pixmap() for page in doc]
|
58 |
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
@@ -61,71 +49,58 @@ def extract_text(file_path: str, file_extension: str) -> tuple[str, str]:
|
|
61 |
os.unlink(temp_img.name)
|
62 |
text = "\n".join(ocr_result) if ocr_result else text
|
63 |
return clean_text(text), ""
|
64 |
-
|
65 |
elif file_extension == "docx":
|
66 |
doc = docx.Document(file_path)
|
67 |
return clean_text("\n".join(p.text for p in doc.paragraphs)), ""
|
68 |
-
|
69 |
elif file_extension == "pptx":
|
70 |
prs = pptx.Presentation(file_path)
|
71 |
-
text = []
|
72 |
-
for slide in prs.slides:
|
73 |
-
for shape in slide.shapes:
|
74 |
-
if hasattr(shape, "text"):
|
75 |
-
text.append(shape.text)
|
76 |
return clean_text("\n".join(text)), ""
|
77 |
-
|
78 |
elif file_extension == "xlsx":
|
79 |
wb = openpyxl.load_workbook(file_path, read_only=True)
|
80 |
-
text = []
|
81 |
-
for sheet in wb.sheetnames:
|
82 |
-
for row in wb[sheet].iter_rows(values_only=True):
|
83 |
-
text.append(" ".join(str(cell) for cell in row if cell))
|
84 |
return clean_text("\n".join(text)), ""
|
85 |
-
|
86 |
elif file_extension in ["jpg", "jpeg", "png"]:
|
87 |
ocr_result = reader.readtext(file_path, detail=0)
|
88 |
return clean_text("\n".join(ocr_result)), ""
|
89 |
-
|
90 |
return "", "Unsupported file format"
|
91 |
except Exception as e:
|
92 |
return "", f"Error reading {file_extension.upper()} file: {str(e)}"
|
93 |
|
94 |
-
def chunk_text(text: str, max_tokens: int = 768)
|
95 |
-
"""Split text into manageable chunks for summarization"""
|
96 |
try:
|
97 |
sentences = sent_tokenize(text)
|
98 |
except:
|
99 |
-
# Fallback if sentence tokenization fails
|
100 |
words = text.split()
|
101 |
sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)]
|
102 |
-
|
103 |
chunks = []
|
104 |
current_chunk = ""
|
105 |
-
|
106 |
for sentence in sentences:
|
107 |
if len(current_chunk.split()) + len(sentence.split()) <= max_tokens:
|
108 |
current_chunk += " " + sentence
|
109 |
else:
|
110 |
chunks.append(current_chunk.strip())
|
111 |
current_chunk = sentence
|
112 |
-
|
113 |
if current_chunk:
|
114 |
chunks.append(current_chunk.strip())
|
115 |
-
|
116 |
return chunks
|
117 |
|
118 |
def generate_summary(text: str, length: str = "medium") -> str:
|
119 |
-
"""Generate summary with appropriate length parameters"""
|
120 |
length_params = {
|
121 |
"short": {"max_length": 80, "min_length": 30},
|
122 |
"medium": {"max_length": 200, "min_length": 80},
|
123 |
"long": {"max_length": 300, "min_length": 210}
|
124 |
}
|
125 |
-
|
126 |
chunks = chunk_text(text)
|
127 |
summaries = []
|
128 |
-
|
129 |
for chunk in chunks:
|
130 |
try:
|
131 |
summary = summarizer(
|
@@ -141,14 +116,11 @@ def generate_summary(text: str, length: str = "medium") -> str:
|
|
141 |
summaries.append(summary[0]['summary_text'])
|
142 |
except Exception as e:
|
143 |
summaries.append(f"[Chunk error: {str(e)}]")
|
144 |
-
|
145 |
-
# Combine and format the final summary
|
146 |
final_summary = " ".join(summaries)
|
147 |
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
|
148 |
return final_summary if len(final_summary) > 25 else "Summary too short - document may be too brief"
|
149 |
|
150 |
-
def text_to_speech(text: str)
|
151 |
-
"""Convert text to speech and return temporary audio file path"""
|
152 |
try:
|
153 |
tts = gTTS(text)
|
154 |
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
@@ -158,28 +130,18 @@ def text_to_speech(text: str) -> str:
|
|
158 |
print(f"Error in text-to-speech: {e}")
|
159 |
return ""
|
160 |
|
161 |
-
def create_pdf(summary: str, original_filename: str)
|
162 |
-
"""Create a PDF file from the summary text"""
|
163 |
try:
|
164 |
-
# Create PDF object
|
165 |
pdf = FPDF()
|
166 |
pdf.add_page()
|
167 |
pdf.set_font("Arial", size=12)
|
168 |
-
|
169 |
-
# Add title
|
170 |
pdf.set_font("Arial", 'B', 16)
|
171 |
pdf.cell(200, 10, txt="Document Summary", ln=1, align='C')
|
172 |
pdf.set_font("Arial", size=12)
|
173 |
-
|
174 |
-
# Add metadata
|
175 |
pdf.cell(200, 10, txt=f"Original file: {original_filename}", ln=1)
|
176 |
pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1)
|
177 |
pdf.ln(10)
|
178 |
-
|
179 |
-
# Add summary content
|
180 |
pdf.multi_cell(0, 10, txt=summary)
|
181 |
-
|
182 |
-
# Save to temporary file
|
183 |
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
184 |
pdf.output(temp_pdf.name)
|
185 |
return temp_pdf.name
|
@@ -187,35 +149,29 @@ def create_pdf(summary: str, original_filename: str) -> str:
|
|
187 |
print(f"Error creating PDF: {e}")
|
188 |
return ""
|
189 |
|
190 |
-
def summarize_document(file, summary_length: str, enable_tts: bool):
|
191 |
-
"""Main processing function for Gradio interface"""
|
192 |
if file is None:
|
193 |
-
return "Please upload a document first", "
|
194 |
-
|
195 |
file_path = file.name
|
196 |
file_extension = file_path.split(".")[-1].lower()
|
197 |
original_filename = os.path.basename(file_path)
|
198 |
-
|
199 |
text, error = extract_text(file_path, file_extension)
|
200 |
if error:
|
201 |
-
return error, "
|
202 |
-
|
203 |
if not text or len(text.split()) < 30:
|
204 |
-
return "Document is too short or contains too little text to summarize", "
|
205 |
-
|
206 |
try:
|
207 |
summary = generate_summary(text, summary_length)
|
208 |
audio_path = text_to_speech(summary) if enable_tts else None
|
209 |
pdf_path = create_pdf(summary, original_filename) if summary else None
|
210 |
-
return summary, "
|
211 |
except Exception as e:
|
212 |
-
return f"Summarization error: {str(e)}", "
|
213 |
|
214 |
-
# Gradio Interface
|
215 |
with gr.Blocks(title="Document Summarizer", theme=gr.themes.Soft()) as demo:
|
216 |
gr.Markdown("# 📄 Advanced Document Summarizer")
|
217 |
-
gr.Markdown("Upload a document to generate a summary with
|
218 |
-
|
219 |
with gr.Row():
|
220 |
with gr.Column():
|
221 |
file_input = gr.File(
|
@@ -228,46 +184,27 @@ with gr.Blocks(title="Document Summarizer", theme=gr.themes.Soft()) as demo:
|
|
228 |
value="medium",
|
229 |
label="Summary Length"
|
230 |
)
|
231 |
-
tts_checkbox = gr.Checkbox(
|
232 |
-
label="Enable Text-to-Speech",
|
233 |
-
value=False
|
234 |
-
)
|
235 |
submit_btn = gr.Button("Generate Summary", variant="primary")
|
236 |
-
|
237 |
with gr.Column():
|
238 |
output = gr.Textbox(label="Summary", lines=10)
|
239 |
-
|
240 |
-
audio_output = gr.Audio(label="Audio Summary", visible=False)
|
241 |
pdf_download = gr.File(label="Download Summary as PDF", visible=False)
|
242 |
-
|
243 |
-
def
|
244 |
-
|
245 |
-
|
246 |
-
def update_ui(summary, status, audio_path, pdf_path):
|
247 |
return (
|
248 |
summary,
|
249 |
-
|
250 |
-
gr.Audio(visible=audio_path is not None, value=audio_path),
|
251 |
gr.File(visible=pdf_path is not None, value=pdf_path)
|
252 |
)
|
253 |
-
|
254 |
-
tts_checkbox.change(
|
255 |
-
fn=toggle_audio_visibility,
|
256 |
-
inputs=tts_checkbox,
|
257 |
-
outputs=audio_output
|
258 |
-
)
|
259 |
-
|
260 |
submit_btn.click(
|
261 |
-
fn=
|
262 |
-
inputs=[file_input, length_radio
|
263 |
-
outputs=[output,
|
264 |
-
).then(
|
265 |
-
fn=update_ui,
|
266 |
-
inputs=[output, status, audio_output, pdf_download],
|
267 |
-
outputs=[output, status, audio_output, pdf_download]
|
268 |
)
|
269 |
|
270 |
-
# FastAPI endpoints for files
|
271 |
@app.get("/files/{file_name}")
|
272 |
async def get_file(file_name: str):
|
273 |
file_path = os.path.join(tempfile.gettempdir(), file_name)
|
@@ -275,7 +212,6 @@ async def get_file(file_name: str):
|
|
275 |
return FileResponse(file_path)
|
276 |
return JSONResponse({"error": "File not found"}, status_code=404)
|
277 |
|
278 |
-
# Mount Gradio app to FastAPI
|
279 |
app = gr.mount_gradio_app(app, demo, path="/")
|
280 |
|
281 |
@app.get("/")
|
|
|
17 |
from fpdf import FPDF
|
18 |
import datetime
|
19 |
|
|
|
20 |
nltk.download('punkt', quiet=True)
|
21 |
|
|
|
22 |
app = FastAPI()
|
23 |
|
24 |
+
# Load models
|
25 |
MODEL_NAME = "facebook/bart-large-cnn"
|
26 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
27 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
28 |
+
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
reader = easyocr.Reader(['en'])
|
|
|
31 |
|
32 |
def clean_text(text: str) -> str:
|
33 |
+
text = re.sub(r'\s+', ' ', text)
|
34 |
+
text = re.sub(r'•\s*|\d\.\s+', '', text)
|
35 |
+
text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
|
36 |
+
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
|
|
|
37 |
return text.strip()
|
38 |
|
39 |
+
def extract_text(file_path: str, file_extension: str):
|
|
|
40 |
try:
|
41 |
if file_extension == "pdf":
|
42 |
with fitz.open(file_path) as doc:
|
43 |
text = "\n".join(page.get_text("text") for page in doc)
|
|
|
44 |
if len(text.strip()) < 50:
|
45 |
images = [page.get_pixmap() for page in doc]
|
46 |
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
|
|
49 |
os.unlink(temp_img.name)
|
50 |
text = "\n".join(ocr_result) if ocr_result else text
|
51 |
return clean_text(text), ""
|
52 |
+
|
53 |
elif file_extension == "docx":
|
54 |
doc = docx.Document(file_path)
|
55 |
return clean_text("\n".join(p.text for p in doc.paragraphs)), ""
|
56 |
+
|
57 |
elif file_extension == "pptx":
|
58 |
prs = pptx.Presentation(file_path)
|
59 |
+
text = [shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")]
|
|
|
|
|
|
|
|
|
60 |
return clean_text("\n".join(text)), ""
|
61 |
+
|
62 |
elif file_extension == "xlsx":
|
63 |
wb = openpyxl.load_workbook(file_path, read_only=True)
|
64 |
+
text = [" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)]
|
|
|
|
|
|
|
65 |
return clean_text("\n".join(text)), ""
|
66 |
+
|
67 |
elif file_extension in ["jpg", "jpeg", "png"]:
|
68 |
ocr_result = reader.readtext(file_path, detail=0)
|
69 |
return clean_text("\n".join(ocr_result)), ""
|
70 |
+
|
71 |
return "", "Unsupported file format"
|
72 |
except Exception as e:
|
73 |
return "", f"Error reading {file_extension.upper()} file: {str(e)}"
|
74 |
|
75 |
+
def chunk_text(text: str, max_tokens: int = 768):
|
|
|
76 |
try:
|
77 |
sentences = sent_tokenize(text)
|
78 |
except:
|
|
|
79 |
words = text.split()
|
80 |
sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)]
|
81 |
+
|
82 |
chunks = []
|
83 |
current_chunk = ""
|
|
|
84 |
for sentence in sentences:
|
85 |
if len(current_chunk.split()) + len(sentence.split()) <= max_tokens:
|
86 |
current_chunk += " " + sentence
|
87 |
else:
|
88 |
chunks.append(current_chunk.strip())
|
89 |
current_chunk = sentence
|
90 |
+
|
91 |
if current_chunk:
|
92 |
chunks.append(current_chunk.strip())
|
93 |
+
|
94 |
return chunks
|
95 |
|
96 |
def generate_summary(text: str, length: str = "medium") -> str:
|
|
|
97 |
length_params = {
|
98 |
"short": {"max_length": 80, "min_length": 30},
|
99 |
"medium": {"max_length": 200, "min_length": 80},
|
100 |
"long": {"max_length": 300, "min_length": 210}
|
101 |
}
|
|
|
102 |
chunks = chunk_text(text)
|
103 |
summaries = []
|
|
|
104 |
for chunk in chunks:
|
105 |
try:
|
106 |
summary = summarizer(
|
|
|
116 |
summaries.append(summary[0]['summary_text'])
|
117 |
except Exception as e:
|
118 |
summaries.append(f"[Chunk error: {str(e)}]")
|
|
|
|
|
119 |
final_summary = " ".join(summaries)
|
120 |
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
|
121 |
return final_summary if len(final_summary) > 25 else "Summary too short - document may be too brief"
|
122 |
|
123 |
+
def text_to_speech(text: str):
|
|
|
124 |
try:
|
125 |
tts = gTTS(text)
|
126 |
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
|
|
130 |
print(f"Error in text-to-speech: {e}")
|
131 |
return ""
|
132 |
|
133 |
+
def create_pdf(summary: str, original_filename: str):
|
|
|
134 |
try:
|
|
|
135 |
pdf = FPDF()
|
136 |
pdf.add_page()
|
137 |
pdf.set_font("Arial", size=12)
|
|
|
|
|
138 |
pdf.set_font("Arial", 'B', 16)
|
139 |
pdf.cell(200, 10, txt="Document Summary", ln=1, align='C')
|
140 |
pdf.set_font("Arial", size=12)
|
|
|
|
|
141 |
pdf.cell(200, 10, txt=f"Original file: {original_filename}", ln=1)
|
142 |
pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1)
|
143 |
pdf.ln(10)
|
|
|
|
|
144 |
pdf.multi_cell(0, 10, txt=summary)
|
|
|
|
|
145 |
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
146 |
pdf.output(temp_pdf.name)
|
147 |
return temp_pdf.name
|
|
|
149 |
print(f"Error creating PDF: {e}")
|
150 |
return ""
|
151 |
|
152 |
+
def summarize_document(file, summary_length: str, enable_tts: bool = True):
|
|
|
153 |
if file is None:
|
154 |
+
return "Please upload a document first", "", None, None
|
|
|
155 |
file_path = file.name
|
156 |
file_extension = file_path.split(".")[-1].lower()
|
157 |
original_filename = os.path.basename(file_path)
|
|
|
158 |
text, error = extract_text(file_path, file_extension)
|
159 |
if error:
|
160 |
+
return error, "", None, None
|
|
|
161 |
if not text or len(text.split()) < 30:
|
162 |
+
return "Document is too short or contains too little text to summarize", "", None, None
|
|
|
163 |
try:
|
164 |
summary = generate_summary(text, summary_length)
|
165 |
audio_path = text_to_speech(summary) if enable_tts else None
|
166 |
pdf_path = create_pdf(summary, original_filename) if summary else None
|
167 |
+
return summary, "", audio_path, pdf_path
|
168 |
except Exception as e:
|
169 |
+
return f"Summarization error: {str(e)}", "", None, None
|
170 |
|
|
|
171 |
with gr.Blocks(title="Document Summarizer", theme=gr.themes.Soft()) as demo:
|
172 |
gr.Markdown("# 📄 Advanced Document Summarizer")
|
173 |
+
gr.Markdown("Upload a document to generate a summary with audio and optional PDF download")
|
174 |
+
|
175 |
with gr.Row():
|
176 |
with gr.Column():
|
177 |
file_input = gr.File(
|
|
|
184 |
value="medium",
|
185 |
label="Summary Length"
|
186 |
)
|
|
|
|
|
|
|
|
|
187 |
submit_btn = gr.Button("Generate Summary", variant="primary")
|
188 |
+
|
189 |
with gr.Column():
|
190 |
output = gr.Textbox(label="Summary", lines=10)
|
191 |
+
audio_output = gr.Audio(label="Audio Summary")
|
|
|
192 |
pdf_download = gr.File(label="Download Summary as PDF", visible=False)
|
193 |
+
|
194 |
+
def summarize_and_return_ui(file, summary_length):
|
195 |
+
summary, _, audio_path, pdf_path = summarize_document(file, summary_length)
|
|
|
|
|
196 |
return (
|
197 |
summary,
|
198 |
+
audio_path,
|
|
|
199 |
gr.File(visible=pdf_path is not None, value=pdf_path)
|
200 |
)
|
201 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
submit_btn.click(
|
203 |
+
fn=summarize_and_return_ui,
|
204 |
+
inputs=[file_input, length_radio],
|
205 |
+
outputs=[output, audio_output, pdf_download]
|
|
|
|
|
|
|
|
|
206 |
)
|
207 |
|
|
|
208 |
@app.get("/files/{file_name}")
|
209 |
async def get_file(file_name: str):
|
210 |
file_path = os.path.join(tempfile.gettempdir(), file_name)
|
|
|
212 |
return FileResponse(file_path)
|
213 |
return JSONResponse({"error": "File not found"}, status_code=404)
|
214 |
|
|
|
215 |
app = gr.mount_gradio_app(app, demo, path="/")
|
216 |
|
217 |
@app.get("/")
|