File size: 6,942 Bytes
6f78a44
 
da10ca7
7839da1
 
 
 
 
 
 
6f78a44
da10ca7
6f78a44
da10ca7
 
7839da1
da10ca7
7839da1
 
6f78a44
7839da1
 
 
6f78a44
7839da1
 
 
 
 
 
6f78a44
7839da1
da10ca7
6f78a44
7839da1
 
6f78a44
 
7839da1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da10ca7
7839da1
 
 
 
 
 
 
 
 
 
 
da10ca7
 
 
 
7839da1
 
 
 
 
 
 
 
 
da10ca7
7839da1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f78a44
 
 
 
 
 
 
 
 
 
 
 
7839da1
 
 
 
 
 
 
 
 
 
 
 
 
 
6f78a44
7839da1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f78a44
7839da1
 
6f78a44
 
 
 
 
 
 
 
 
 
 
 
da10ca7
6f78a44
 
da10ca7
6f78a44
 
 
 
 
 
 
 
 
 
 
 
 
da10ca7
 
6f78a44
 
 
 
da10ca7
 
 
6f78a44
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import fitz  # PyMuPDF
import docx
import pptx
import openpyxl
import re
import nltk
import torch
from nltk.tokenize import sent_tokenize
from gtts import gTTS
from fpdf import FPDF
import tempfile
import os
import easyocr
import datetime
import hashlib

# Initialize
nltk.download('punkt', quiet=True)
app = FastAPI()

# Load Summarizer Model
MODEL_NAME = "facebook/bart-large-cnn"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
model.eval()
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)

# Load OCR Reader
reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())

# Cache
summary_cache = {}

# --- Helper Functions ---

def clean_text(text: str) -> str:
    text = re.sub(r'\s+', ' ', text)
    text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
    text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
    text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
    return text.strip()

def extract_text(file_path: str, file_extension: str):
    try:
        if file_extension == "pdf":
            with fitz.open(file_path) as doc:
                text = "\n".join(page.get_text("text") for page in doc)
                if len(text.strip()) < 50:
                    images = [page.get_pixmap() for page in doc]
                    temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
                    images[0].save(temp_img.name)
                    ocr_result = reader.readtext(temp_img.name, detail=0)
                    os.unlink(temp_img.name)
                    text = "\n".join(ocr_result) if ocr_result else text
                return clean_text(text), ""

        elif file_extension == "docx":
            doc = docx.Document(file_path)
            return clean_text("\n".join(p.text for p in doc.paragraphs)), ""

        elif file_extension == "pptx":
            prs = pptx.Presentation(file_path)
            text = [shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")]
            return clean_text("\n".join(text)), ""

        elif file_extension == "xlsx":
            wb = openpyxl.load_workbook(file_path, read_only=True)
            text = [" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)]
            return clean_text("\n".join(text)), ""

        elif file_extension in ["jpg", "jpeg", "png"]:
            ocr_result = reader.readtext(file_path, detail=0)
            return clean_text("\n".join(ocr_result)), ""

        return "", "Unsupported file format"
    except Exception as e:
        return "", f"Error reading {file_extension.upper()} file: {str(e)}"

def chunk_text(text: str, max_tokens: int = 950):
    try:
        sentences = sent_tokenize(text)
    except:
        words = text.split()
        sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)]

    chunks = []
    current_chunk = ""
    for sentence in sentences:
        token_length = len(tokenizer.encode(current_chunk + " " + sentence))
        if token_length <= max_tokens:
            current_chunk += " " + sentence
        else:
            chunks.append(current_chunk.strip())
            current_chunk = sentence

    if current_chunk:
        chunks.append(current_chunk.strip())

    return chunks

def generate_summary(text: str, length: str = "medium") -> str:
    cache_key = hashlib.md5((text + length).encode()).hexdigest()
    if cache_key in summary_cache:
        return summary_cache[cache_key]

    length_params = {
        "short": {"max_length": 80, "min_length": 30},
        "medium": {"max_length": 200, "min_length": 80},
        "long": {"max_length": 300, "min_length": 210}
    }
    chunks = chunk_text(text)

    summaries = summarizer(
        chunks,
        max_length=length_params[length]["max_length"],
        min_length=length_params[length]["min_length"],
        do_sample=False,
        truncation=True,
        no_repeat_ngram_size=2,
        num_beams=2,
        early_stopping=True
    )
    summary_texts = [s['summary_text'] for s in summaries]

    final_summary = " ".join(summary_texts)
    final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
    final_summary = final_summary if len(final_summary) > 25 else "Summary too short - document may be too brief"

    summary_cache[cache_key] = final_summary
    return final_summary

def text_to_speech(text: str):
    try:
        tts = gTTS(text)
        temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
        tts.save(temp_audio.name)
        return temp_audio.name
    except Exception:
        return ""

def create_pdf(summary: str, original_filename: str):
    try:
        pdf = FPDF()
        pdf.add_page()
        pdf.set_font("Arial", 'B', 16)
        pdf.cell(200, 10, txt="Document Summary", ln=1, align='C')
        pdf.set_font("Arial", size=12)
        pdf.cell(200, 10, txt=f"Original file: {original_filename}", ln=1)
        pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1)
        pdf.ln(10)
        pdf.multi_cell(0, 10, txt=summary)
        temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
        pdf.output(temp_pdf.name)
        return temp_pdf.name
    except Exception:
        return ""

# --- API Endpoints ---

@app.post("/summarize/")
async def summarize_api(file: UploadFile = File(...), length: str = Form("medium")):
    contents = await file.read()
    with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
        tmp_file.write(contents)
        tmp_path = tmp_file.name

    file_ext = tmp_path.split('.')[-1].lower()
    text, error = extract_text(tmp_path, file_ext)

    if error:
        return JSONResponse({"detail": error}, status_code=400)

    if not text or len(text.split()) < 30:
        return JSONResponse({"detail": "Document too short to summarize"}, status_code=400)

    summary = generate_summary(text, length)
    audio_path = text_to_speech(summary)
    pdf_path = create_pdf(summary, file.filename)

    response = {"summary": summary}
    if audio_path:
        response["audioUrl"] = f"/files/{os.path.basename(audio_path)}"
    if pdf_path:
        response["pdfUrl"] = f"/files/{os.path.basename(pdf_path)}"

    return JSONResponse(response)

@app.get("/files/{file_name}")
async def serve_file(file_name: str):
    path = os.path.join(tempfile.gettempdir(), file_name)
    if os.path.exists(path):
        return FileResponse(path)
    return JSONResponse({"error": "File not found"}, status_code=404)

@app.get("/")
def home():
    return RedirectResponse(url="/")