Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,5 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
-
from fastapi.middleware.cors import CORSMiddleware
|
4 |
-
import os
|
5 |
-
import tempfile
|
6 |
-
from gtts import gTTS
|
7 |
-
from fpdf import FPDF
|
8 |
-
import datetime
|
9 |
import fitz # PyMuPDF
|
10 |
import docx
|
11 |
import pptx
|
@@ -13,26 +7,22 @@ import openpyxl
|
|
13 |
import re
|
14 |
import nltk
|
15 |
from nltk.tokenize import sent_tokenize
|
16 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
17 |
import torch
|
|
|
|
|
|
|
|
|
|
|
18 |
import easyocr
|
19 |
-
import
|
|
|
|
|
20 |
import hashlib
|
21 |
|
22 |
nltk.download('punkt', quiet=True)
|
23 |
|
24 |
app = FastAPI()
|
25 |
|
26 |
-
# CORS Configuration
|
27 |
-
app.add_middleware(
|
28 |
-
CORSMiddleware,
|
29 |
-
allow_origins=["*"],
|
30 |
-
allow_credentials=True,
|
31 |
-
allow_methods=["*"],
|
32 |
-
allow_headers=["*"],
|
33 |
-
)
|
34 |
-
|
35 |
-
# Initialize models
|
36 |
MODEL_NAME = "facebook/bart-large-cnn"
|
37 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
38 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
@@ -40,6 +30,8 @@ model.eval()
|
|
40 |
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)
|
41 |
|
42 |
reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
|
|
|
|
|
43 |
summary_cache = {}
|
44 |
|
45 |
def clean_text(text: str) -> str:
|
@@ -65,7 +57,7 @@ def extract_text(file_path: str, file_extension: str):
|
|
65 |
|
66 |
elif file_extension == "docx":
|
67 |
doc = docx.Document(file_path)
|
68 |
-
return clean_text("\n".join(p.text for p in doc.paragraphs), ""
|
69 |
|
70 |
elif file_extension == "pptx":
|
71 |
prs = pptx.Presentation(file_path)
|
@@ -77,6 +69,10 @@ def extract_text(file_path: str, file_extension: str):
|
|
77 |
text = [" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)]
|
78 |
return clean_text("\n".join(text)), ""
|
79 |
|
|
|
|
|
|
|
|
|
80 |
return "", "Unsupported file format"
|
81 |
except Exception as e:
|
82 |
return "", f"Error reading {file_extension.upper()} file: {str(e)}"
|
@@ -86,7 +82,7 @@ def chunk_text(text: str, max_tokens: int = 950):
|
|
86 |
sentences = sent_tokenize(text)
|
87 |
except:
|
88 |
words = text.split()
|
89 |
-
sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20]
|
90 |
|
91 |
chunks = []
|
92 |
current_chunk = ""
|
@@ -165,57 +161,71 @@ def create_pdf(summary: str, original_filename: str):
|
|
165 |
print(f"Error creating PDF: {e}")
|
166 |
return ""
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
raise HTTPException(
|
180 |
-
status_code=400,
|
181 |
-
detail="Please upload a valid document (PDF, DOCX, PPTX, or XLSX)"
|
182 |
-
)
|
183 |
-
|
184 |
try:
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
# Process file
|
191 |
-
text, error = extract_text(temp_path, os.path.splitext(file.filename)[1][1:].lower())
|
192 |
-
if error:
|
193 |
-
raise HTTPException(status_code=400, detail=error)
|
194 |
-
|
195 |
-
summary = generate_summary(text, length)
|
196 |
-
audio_path = text_to_speech(summary)
|
197 |
-
pdf_path = create_pdf(summary, file.filename)
|
198 |
-
|
199 |
-
return {
|
200 |
-
"summary": summary,
|
201 |
-
"audio_url": f"/files/{os.path.basename(audio_path)}" if audio_path else None,
|
202 |
-
"pdf_url": f"/files/{os.path.basename(pdf_path)}" if pdf_path else None
|
203 |
-
}
|
204 |
-
|
205 |
-
except HTTPException:
|
206 |
-
raise
|
207 |
except Exception as e:
|
208 |
-
|
209 |
-
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
)
|
212 |
-
finally:
|
213 |
-
if 'temp_path' in locals() and os.path.exists(temp_path):
|
214 |
-
os.unlink(temp_path)
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
if os.path.exists(file_path):
|
220 |
return FileResponse(file_path)
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import fitz # PyMuPDF
|
4 |
import docx
|
5 |
import pptx
|
|
|
7 |
import re
|
8 |
import nltk
|
9 |
from nltk.tokenize import sent_tokenize
|
|
|
10 |
import torch
|
11 |
+
from fastapi import FastAPI
|
12 |
+
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
|
13 |
+
from gtts import gTTS
|
14 |
+
import tempfile
|
15 |
+
import os
|
16 |
import easyocr
|
17 |
+
from fpdf import FPDF
|
18 |
+
import datetime
|
19 |
+
from concurrent.futures import ThreadPoolExecutor
|
20 |
import hashlib
|
21 |
|
22 |
nltk.download('punkt', quiet=True)
|
23 |
|
24 |
app = FastAPI()
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
MODEL_NAME = "facebook/bart-large-cnn"
|
27 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
28 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
|
|
30 |
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)
|
31 |
|
32 |
reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
|
33 |
+
executor = ThreadPoolExecutor()
|
34 |
+
|
35 |
summary_cache = {}
|
36 |
|
37 |
def clean_text(text: str) -> str:
|
|
|
57 |
|
58 |
elif file_extension == "docx":
|
59 |
doc = docx.Document(file_path)
|
60 |
+
return clean_text("\n".join(p.text for p in doc.paragraphs)), ""
|
61 |
|
62 |
elif file_extension == "pptx":
|
63 |
prs = pptx.Presentation(file_path)
|
|
|
69 |
text = [" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)]
|
70 |
return clean_text("\n".join(text)), ""
|
71 |
|
72 |
+
elif file_extension in ["jpg", "jpeg", "png"]:
|
73 |
+
ocr_result = reader.readtext(file_path, detail=0)
|
74 |
+
return clean_text("\n".join(ocr_result)), ""
|
75 |
+
|
76 |
return "", "Unsupported file format"
|
77 |
except Exception as e:
|
78 |
return "", f"Error reading {file_extension.upper()} file: {str(e)}"
|
|
|
82 |
sentences = sent_tokenize(text)
|
83 |
except:
|
84 |
words = text.split()
|
85 |
+
sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)]
|
86 |
|
87 |
chunks = []
|
88 |
current_chunk = ""
|
|
|
161 |
print(f"Error creating PDF: {e}")
|
162 |
return ""
|
163 |
|
164 |
+
def summarize_document(file, summary_length: str, enable_tts: bool = True):
|
165 |
+
if file is None:
|
166 |
+
return "Please upload a document first", "", None, None
|
167 |
+
file_path = file.name
|
168 |
+
file_extension = file_path.split(".")[-1].lower()
|
169 |
+
original_filename = os.path.basename(file_path)
|
170 |
+
text, error = extract_text(file_path, file_extension)
|
171 |
+
if error:
|
172 |
+
return error, "", None, None
|
173 |
+
if not text or len(text.split()) < 30:
|
174 |
+
return "Document is too short or contains too little text to summarize", "", None, None
|
|
|
|
|
|
|
|
|
|
|
175 |
try:
|
176 |
+
summary = generate_summary(text, summary_length)
|
177 |
+
audio_path = text_to_speech(summary) if enable_tts else None
|
178 |
+
pdf_path = create_pdf(summary, original_filename) if summary else None
|
179 |
+
return summary, "", audio_path, pdf_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
except Exception as e:
|
181 |
+
return f"Summarization error: {str(e)}", "", None, None
|
182 |
+
|
183 |
+
with gr.Blocks(title="Document Summarizer", theme=gr.themes.Soft()) as demo:
|
184 |
+
gr.Markdown("# 📄 Advanced Document Summarizer")
|
185 |
+
gr.Markdown("Upload a document to generate a summary with audio and optional PDF download")
|
186 |
+
|
187 |
+
with gr.Row():
|
188 |
+
with gr.Column():
|
189 |
+
file_input = gr.File(
|
190 |
+
label="Upload Document",
|
191 |
+
file_types=[".pdf", ".docx", ".pptx", ".xlsx", ".jpg", ".jpeg", ".png"],
|
192 |
+
type="filepath"
|
193 |
+
)
|
194 |
+
length_radio = gr.Radio(
|
195 |
+
["short", "medium", "long"],
|
196 |
+
value="medium",
|
197 |
+
label="Summary Length"
|
198 |
+
)
|
199 |
+
submit_btn = gr.Button("Generate Summary", variant="primary")
|
200 |
+
|
201 |
+
with gr.Column():
|
202 |
+
output = gr.Textbox(label="Summary", lines=10)
|
203 |
+
audio_output = gr.Audio(label="Audio Summary")
|
204 |
+
pdf_download = gr.File(label="Download Summary as PDF", visible=False)
|
205 |
+
|
206 |
+
def summarize_and_return_ui(file, summary_length):
|
207 |
+
summary, _, audio_path, pdf_path = summarize_document(file, summary_length)
|
208 |
+
return (
|
209 |
+
summary,
|
210 |
+
audio_path,
|
211 |
+
gr.File(visible=pdf_path is not None, value=pdf_path)
|
212 |
)
|
|
|
|
|
|
|
213 |
|
214 |
+
submit_btn.click(
|
215 |
+
fn=summarize_and_return_ui,
|
216 |
+
inputs=[file_input, length_radio],
|
217 |
+
outputs=[output, audio_output, pdf_download]
|
218 |
+
)
|
219 |
+
|
220 |
+
@app.get("/files/{file_name}")
|
221 |
+
async def get_file(file_name: str):
|
222 |
+
file_path = os.path.join(tempfile.gettempdir(), file_name)
|
223 |
if os.path.exists(file_path):
|
224 |
return FileResponse(file_path)
|
225 |
+
return JSONResponse({"error": "File not found"}, status_code=404)
|
226 |
+
|
227 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
228 |
+
|
229 |
+
@app.get("/")
|
230 |
+
def redirect_to_interface():
|
231 |
+
return RedirectResponse(url="/")
|