iisadia's picture
Update app.py
1ff708a verified
import streamlit as st
import matplotlib.pyplot as plt
import pandas as pd
import torch
from transformers import AutoConfig, AutoTokenizer
# Page configuration
st.set_page_config(
page_title="Transformer Visualizer",
page_icon="🧠",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS styling
st.markdown("""
<style>
.reportview-container {
background: linear-gradient(45deg, #1a1a1a, #4a4a4a);
}
.sidebar .sidebar-content {
background: #2c2c2c !important;
}
h1, h2, h3, h4, h5, h6 {
color: #00ff00 !important;
}
.stMetric {
background-color: #333333;
border-radius: 10px;
padding: 15px;
}
.architecture {
font-family: monospace;
color: #00ff00;
white-space: pre-wrap;
background-color: #1a1a1a;
padding: 20px;
border-radius: 10px;
border: 1px solid #00ff00;
}
.token-table {
margin-top: 20px;
border: 1px solid #00ff00;
border-radius: 5px;
}
</style>
""", unsafe_allow_html=True)
# Model database
MODELS = {
"BERT": {"model_name": "bert-base-uncased", "type": "Encoder", "layers": 12, "heads": 12, "params": 109.48},
"GPT-2": {"model_name": "gpt2", "type": "Decoder", "layers": 12, "heads": 12, "params": 117},
"T5-Small": {"model_name": "t5-small", "type": "Seq2Seq", "layers": 6, "heads": 8, "params": 60},
"RoBERTa": {"model_name": "roberta-base", "type": "Encoder", "layers": 12, "heads": 12, "params": 125},
"DistilBERT": {"model_name": "distilbert-base-uncased", "type": "Encoder", "layers": 6, "heads": 12, "params": 66},
"ALBERT": {"model_name": "albert-base-v2", "type": "Encoder", "layers": 12, "heads": 12, "params": 11.8},
"ELECTRA": {"model_name": "google/electra-small-discriminator", "type": "Encoder", "layers": 12, "heads": 12, "params": 13.5},
"XLNet": {"model_name": "xlnet-base-cased", "type": "AutoRegressive", "layers": 12, "heads": 12, "params": 110},
"BART": {"model_name": "facebook/bart-base", "type": "Seq2Seq", "layers": 6, "heads": 16, "params": 139},
"DeBERTa": {"model_name": "microsoft/deberta-base", "type": "Encoder", "layers": 12, "heads": 12, "params": 139}
}
def get_model_config(model_name):
config = AutoConfig.from_pretrained(MODELS[model_name]["model_name"])
return config
def plot_model_comparison(selected_model):
model_names = list(MODELS.keys())
params = [m["params"] for m in MODELS.values()]
fig, ax = plt.subplots(figsize=(10, 6))
bars = ax.bar(model_names, params)
index = list(MODELS.keys()).index(selected_model)
bars[index].set_color('#00ff00')
ax.set_ylabel('Parameters (Millions)', color='white')
ax.set_title('Model Size Comparison', color='white')
ax.tick_params(axis='x', rotation=45, colors='white')
ax.tick_params(axis='y', colors='white')
ax.set_facecolor('#2c2c2c')
fig.patch.set_facecolor('#2c2c2c')
st.pyplot(fig)
def visualize_architecture(model_info):
architecture = []
model_type = model_info["type"]
layers = model_info.get("layers", model_info.get("layers", 12)) # Handle key variations
heads = model_info["heads"]
architecture.append("Input")
architecture.append("β”‚")
architecture.append("β–Ό")
if model_type == "Encoder":
architecture.append("[Embedding Layer]")
for i in range(layers):
architecture.extend([
f"Encoder Layer {i+1}",
"β”œβ”€ Multi-Head Attention",
f"β”‚ └─ {heads} Heads",
"β”œβ”€ Layer Normalization",
"└─ Feed Forward Network",
"β”‚",
"β–Ό"
])
architecture.append("[Output]")
elif model_type == "Decoder":
architecture.append("[Embedding Layer]")
for i in range(layers):
architecture.extend([
f"Decoder Layer {i+1}",
"β”œβ”€ Masked Multi-Head Attention",
f"β”‚ └─ {heads} Heads",
"β”œβ”€ Layer Normalization",
"└─ Feed Forward Network",
"β”‚",
"β–Ό"
])
architecture.append("[Output]")
elif model_type == "Seq2Seq":
architecture.append("Encoder Stack")
for i in range(layers):
architecture.extend([
f"Encoder Layer {i+1}",
"β”œβ”€ Self-Attention",
"└─ Feed Forward Network",
"β”‚",
"β–Ό"
])
architecture.append("β†’β†’β†’ [Context] β†’β†’β†’")
architecture.append("Decoder Stack")
for i in range(layers):
architecture.extend([
f"Decoder Layer {i+1}",
"β”œβ”€ Masked Self-Attention",
"β”œβ”€ Encoder-Decoder Attention",
"└─ Feed Forward Network",
"β”‚",
"β–Ό"
])
architecture.append("[Output]")
return "\n".join(architecture)
def visualize_attention_patterns():
fig, ax = plt.subplots(figsize=(8, 6))
data = torch.randn(5, 5)
ax.imshow(data, cmap='viridis')
ax.set_title('Attention Patterns Example', color='white')
ax.set_facecolor('#2c2c2c')
fig.patch.set_facecolor('#2c2c2c')
st.pyplot(fig)
def get_hardware_recommendation(params):
if params < 100:
return "CPU or Entry-level GPU (e.g., GTX 1060)"
elif 100 <= params < 200:
return "Mid-range GPU (e.g., RTX 2080, RTX 3060)"
else:
return "High-end GPU (e.g., RTX 3090, A100) or TPU"
def main():
st.title("🧠 Transformer Model Visualizer")
selected_model = st.sidebar.selectbox("Select Model", list(MODELS.keys()))
model_info = MODELS[selected_model]
config = get_model_config(selected_model)
tokenizer = AutoTokenizer.from_pretrained(model_info["model_name"])
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Model Type", model_info["type"])
with col2:
st.metric("Layers", model_info.get("layers", model_info.get("layers", "N/A")))
with col3:
st.metric("Attention Heads", model_info["heads"])
with col4:
st.metric("Parameters", f"{model_info['params']}M")
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs([
"Model Structure", "Comparison", "Model Attention",
"Tokenization", "Hardware", "Memory"
])
with tab1:
st.subheader("Architecture Diagram")
architecture = visualize_architecture(model_info)
st.markdown(f"<div class='architecture'>{architecture}</div>", unsafe_allow_html=True)
st.markdown("""
**Legend:**
- **Multi-Head Attention**: Self-attention mechanism with multiple parallel heads
- **Layer Normalization**: Normalization operation between layers
- **Feed Forward Network**: Position-wise fully connected network
- **Masked Attention**: Attention with future token masking
""")
with tab2:
st.subheader("Model Size Comparison")
plot_model_comparison(selected_model)
with tab3:
st.subheader("Model-specific Visualizations")
visualize_attention_patterns()
with tab4:
st.subheader("πŸ“ Tokenization Visualization")
input_text = st.text_input("Enter Text:", "Hello, how are you?")
col1, col2 = st.columns(2)
with col1:
st.markdown("**Tokenized Output**")
tokens = tokenizer.tokenize(input_text)
st.write(tokens)
with col2:
st.markdown("**Token IDs**")
encoded_ids = tokenizer.encode(input_text)
st.write(encoded_ids)
st.markdown("**Token-ID Mapping**")
token_data = pd.DataFrame({
"Token": tokens,
"ID": encoded_ids[1:-1] if tokenizer.cls_token else encoded_ids
})
st.dataframe(token_data, height=150, use_container_width=True)
st.markdown(f"""
**Tokenizer Info:**
- Vocabulary size: `{tokenizer.vocab_size}`
- Special tokens: `{tokenizer.all_special_tokens}`
- Padding token: `{tokenizer.pad_token}`
- Max length: `{tokenizer.model_max_length}`
""")
with tab5:
st.subheader("πŸ–₯️ Hardware Recommendation")
params = model_info["params"]
recommendation = get_hardware_recommendation(params)
st.markdown(f"**Recommended hardware for {selected_model}:**")
st.info(recommendation)
st.markdown("""
**Recommendation Criteria:**
- <100M parameters: Suitable for CPU or entry-level GPUs
- 100-200M parameters: Requires mid-range GPUs
- >200M parameters: Needs high-end GPUs/TPUs
""")
with tab6:
st.subheader("πŸ’Ύ Memory Usage Estimation")
params = model_info["params"]
memory_mb = params * 4 # 1M params β‰ˆ 4MB in FP32
memory_gb = memory_mb / 1024
st.metric("Estimated Memory (FP32)",
f"{memory_mb:.1f} MB / {memory_gb:.2f} GB")
st.markdown("""
**Memory Notes:**
- Based on 4 bytes per parameter (FP32 precision)
- Actual usage varies with:
- Batch size
- Sequence length
- Precision (FP16/FP32)
- Optimizer states (training)
""")
if __name__ == "__main__":
main()