Spaces:
Sleeping
Sleeping
File size: 9,605 Bytes
c443e62 cf92986 c443e62 cf92986 c443e62 1ff708a c443e62 1ff708a c443e62 cf92986 c443e62 6906b73 cf92986 1ff708a cf92986 6906b73 c443e62 cf92986 c443e62 1ff708a db0eecf 1ff708a db0eecf c443e62 cf92986 c443e62 cf92986 1ff708a cf92986 1ff708a db0eecf 1ff708a db0eecf cf92986 c443e62 cf92986 c443e62 cf92986 c443e62 6cf26d6 cf92986 1ff708a 6cf26d6 cf92986 1ff708a db0eecf 1ff708a db0eecf 1ff708a c443e62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import streamlit as st
import matplotlib.pyplot as plt
import pandas as pd
import torch
from transformers import AutoConfig, AutoTokenizer
# Page configuration
st.set_page_config(
page_title="Transformer Visualizer",
page_icon="π§ ",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS styling
st.markdown("""
<style>
.reportview-container {
background: linear-gradient(45deg, #1a1a1a, #4a4a4a);
}
.sidebar .sidebar-content {
background: #2c2c2c !important;
}
h1, h2, h3, h4, h5, h6 {
color: #00ff00 !important;
}
.stMetric {
background-color: #333333;
border-radius: 10px;
padding: 15px;
}
.architecture {
font-family: monospace;
color: #00ff00;
white-space: pre-wrap;
background-color: #1a1a1a;
padding: 20px;
border-radius: 10px;
border: 1px solid #00ff00;
}
.token-table {
margin-top: 20px;
border: 1px solid #00ff00;
border-radius: 5px;
}
</style>
""", unsafe_allow_html=True)
# Model database
MODELS = {
"BERT": {"model_name": "bert-base-uncased", "type": "Encoder", "layers": 12, "heads": 12, "params": 109.48},
"GPT-2": {"model_name": "gpt2", "type": "Decoder", "layers": 12, "heads": 12, "params": 117},
"T5-Small": {"model_name": "t5-small", "type": "Seq2Seq", "layers": 6, "heads": 8, "params": 60},
"RoBERTa": {"model_name": "roberta-base", "type": "Encoder", "layers": 12, "heads": 12, "params": 125},
"DistilBERT": {"model_name": "distilbert-base-uncased", "type": "Encoder", "layers": 6, "heads": 12, "params": 66},
"ALBERT": {"model_name": "albert-base-v2", "type": "Encoder", "layers": 12, "heads": 12, "params": 11.8},
"ELECTRA": {"model_name": "google/electra-small-discriminator", "type": "Encoder", "layers": 12, "heads": 12, "params": 13.5},
"XLNet": {"model_name": "xlnet-base-cased", "type": "AutoRegressive", "layers": 12, "heads": 12, "params": 110},
"BART": {"model_name": "facebook/bart-base", "type": "Seq2Seq", "layers": 6, "heads": 16, "params": 139},
"DeBERTa": {"model_name": "microsoft/deberta-base", "type": "Encoder", "layers": 12, "heads": 12, "params": 139}
}
def get_model_config(model_name):
config = AutoConfig.from_pretrained(MODELS[model_name]["model_name"])
return config
def plot_model_comparison(selected_model):
model_names = list(MODELS.keys())
params = [m["params"] for m in MODELS.values()]
fig, ax = plt.subplots(figsize=(10, 6))
bars = ax.bar(model_names, params)
index = list(MODELS.keys()).index(selected_model)
bars[index].set_color('#00ff00')
ax.set_ylabel('Parameters (Millions)', color='white')
ax.set_title('Model Size Comparison', color='white')
ax.tick_params(axis='x', rotation=45, colors='white')
ax.tick_params(axis='y', colors='white')
ax.set_facecolor('#2c2c2c')
fig.patch.set_facecolor('#2c2c2c')
st.pyplot(fig)
def visualize_architecture(model_info):
architecture = []
model_type = model_info["type"]
layers = model_info.get("layers", model_info.get("layers", 12)) # Handle key variations
heads = model_info["heads"]
architecture.append("Input")
architecture.append("β")
architecture.append("βΌ")
if model_type == "Encoder":
architecture.append("[Embedding Layer]")
for i in range(layers):
architecture.extend([
f"Encoder Layer {i+1}",
"ββ Multi-Head Attention",
f"β ββ {heads} Heads",
"ββ Layer Normalization",
"ββ Feed Forward Network",
"β",
"βΌ"
])
architecture.append("[Output]")
elif model_type == "Decoder":
architecture.append("[Embedding Layer]")
for i in range(layers):
architecture.extend([
f"Decoder Layer {i+1}",
"ββ Masked Multi-Head Attention",
f"β ββ {heads} Heads",
"ββ Layer Normalization",
"ββ Feed Forward Network",
"β",
"βΌ"
])
architecture.append("[Output]")
elif model_type == "Seq2Seq":
architecture.append("Encoder Stack")
for i in range(layers):
architecture.extend([
f"Encoder Layer {i+1}",
"ββ Self-Attention",
"ββ Feed Forward Network",
"β",
"βΌ"
])
architecture.append("βββ [Context] βββ")
architecture.append("Decoder Stack")
for i in range(layers):
architecture.extend([
f"Decoder Layer {i+1}",
"ββ Masked Self-Attention",
"ββ Encoder-Decoder Attention",
"ββ Feed Forward Network",
"β",
"βΌ"
])
architecture.append("[Output]")
return "\n".join(architecture)
def visualize_attention_patterns():
fig, ax = plt.subplots(figsize=(8, 6))
data = torch.randn(5, 5)
ax.imshow(data, cmap='viridis')
ax.set_title('Attention Patterns Example', color='white')
ax.set_facecolor('#2c2c2c')
fig.patch.set_facecolor('#2c2c2c')
st.pyplot(fig)
def get_hardware_recommendation(params):
if params < 100:
return "CPU or Entry-level GPU (e.g., GTX 1060)"
elif 100 <= params < 200:
return "Mid-range GPU (e.g., RTX 2080, RTX 3060)"
else:
return "High-end GPU (e.g., RTX 3090, A100) or TPU"
def main():
st.title("π§ Transformer Model Visualizer")
selected_model = st.sidebar.selectbox("Select Model", list(MODELS.keys()))
model_info = MODELS[selected_model]
config = get_model_config(selected_model)
tokenizer = AutoTokenizer.from_pretrained(model_info["model_name"])
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Model Type", model_info["type"])
with col2:
st.metric("Layers", model_info.get("layers", model_info.get("layers", "N/A")))
with col3:
st.metric("Attention Heads", model_info["heads"])
with col4:
st.metric("Parameters", f"{model_info['params']}M")
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs([
"Model Structure", "Comparison", "Model Attention",
"Tokenization", "Hardware", "Memory"
])
with tab1:
st.subheader("Architecture Diagram")
architecture = visualize_architecture(model_info)
st.markdown(f"<div class='architecture'>{architecture}</div>", unsafe_allow_html=True)
st.markdown("""
**Legend:**
- **Multi-Head Attention**: Self-attention mechanism with multiple parallel heads
- **Layer Normalization**: Normalization operation between layers
- **Feed Forward Network**: Position-wise fully connected network
- **Masked Attention**: Attention with future token masking
""")
with tab2:
st.subheader("Model Size Comparison")
plot_model_comparison(selected_model)
with tab3:
st.subheader("Model-specific Visualizations")
visualize_attention_patterns()
with tab4:
st.subheader("π Tokenization Visualization")
input_text = st.text_input("Enter Text:", "Hello, how are you?")
col1, col2 = st.columns(2)
with col1:
st.markdown("**Tokenized Output**")
tokens = tokenizer.tokenize(input_text)
st.write(tokens)
with col2:
st.markdown("**Token IDs**")
encoded_ids = tokenizer.encode(input_text)
st.write(encoded_ids)
st.markdown("**Token-ID Mapping**")
token_data = pd.DataFrame({
"Token": tokens,
"ID": encoded_ids[1:-1] if tokenizer.cls_token else encoded_ids
})
st.dataframe(token_data, height=150, use_container_width=True)
st.markdown(f"""
**Tokenizer Info:**
- Vocabulary size: `{tokenizer.vocab_size}`
- Special tokens: `{tokenizer.all_special_tokens}`
- Padding token: `{tokenizer.pad_token}`
- Max length: `{tokenizer.model_max_length}`
""")
with tab5:
st.subheader("π₯οΈ Hardware Recommendation")
params = model_info["params"]
recommendation = get_hardware_recommendation(params)
st.markdown(f"**Recommended hardware for {selected_model}:**")
st.info(recommendation)
st.markdown("""
**Recommendation Criteria:**
- <100M parameters: Suitable for CPU or entry-level GPUs
- 100-200M parameters: Requires mid-range GPUs
- >200M parameters: Needs high-end GPUs/TPUs
""")
with tab6:
st.subheader("πΎ Memory Usage Estimation")
params = model_info["params"]
memory_mb = params * 4 # 1M params β 4MB in FP32
memory_gb = memory_mb / 1024
st.metric("Estimated Memory (FP32)",
f"{memory_mb:.1f} MB / {memory_gb:.2f} GB")
st.markdown("""
**Memory Notes:**
- Based on 4 bytes per parameter (FP32 precision)
- Actual usage varies with:
- Batch size
- Sequence length
- Precision (FP16/FP32)
- Optimizer states (training)
""")
if __name__ == "__main__":
main() |