Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import matplotlib.pyplot as plt
|
3 |
import pandas as pd
|
4 |
import torch
|
5 |
-
from transformers import AutoConfig
|
6 |
|
7 |
# Page configuration
|
8 |
st.set_page_config(
|
@@ -12,47 +14,12 @@ st.set_page_config(
|
|
12 |
initial_sidebar_state="expanded"
|
13 |
)
|
14 |
|
15 |
-
# Custom CSS styling
|
16 |
-
|
17 |
-
<style>
|
18 |
-
.reportview-container {
|
19 |
-
background: linear-gradient(45deg, #1a1a1a, #4a4a4a);
|
20 |
-
}
|
21 |
-
.sidebar .sidebar-content {
|
22 |
-
background: #2c2c2c !important;
|
23 |
-
}
|
24 |
-
h1, h2, h3, h4, h5, h6 {
|
25 |
-
color: #00ff00 !important;
|
26 |
-
}
|
27 |
-
.stMetric {
|
28 |
-
background-color: #333333;
|
29 |
-
border-radius: 10px;
|
30 |
-
padding: 15px;
|
31 |
-
}
|
32 |
-
.architecture {
|
33 |
-
font-family: monospace;
|
34 |
-
color: #00ff00;
|
35 |
-
white-space: pre-wrap;
|
36 |
-
background-color: #1a1a1a;
|
37 |
-
padding: 20px;
|
38 |
-
border-radius: 10px;
|
39 |
-
border: 1px solid #00ff00;
|
40 |
-
}
|
41 |
-
</style>
|
42 |
-
""", unsafe_allow_html=True)
|
43 |
|
44 |
-
# Model database
|
45 |
MODELS = {
|
46 |
-
|
47 |
-
"GPT-2": {"model_name": "gpt2", "type": "Decoder", "layers": 12, "heads": 12, "params": 117},
|
48 |
-
"T5-Small": {"model_name": "t5-small", "type": "Seq2Seq", "layers": 6, "heads": 8, "params": 60},
|
49 |
-
"RoBERTa": {"model_name": "roberta-base", "type": "Encoder", "layers": 12, "heads": 12, "params": 125},
|
50 |
-
"DistilBERT": {"model_name": "distilbert-base-uncased", "type": "Encoder", "layers": 6, "heads": 12, "params": 66},
|
51 |
-
"ALBERT": {"model_name": "albert-base-v2", "type": "Encoder", "layers": 12, "heads": 12, "params": 11.8},
|
52 |
-
"ELECTRA": {"model_name": "google/electra-small-discriminator", "type": "Encoder", "layers": 12, "heads": 12, "params": 13.5},
|
53 |
-
"XLNet": {"model_name": "xlnet-base-cased", "type": "AutoRegressive", "layers": 12, "heads": 12, "params": 110},
|
54 |
-
"BART": {"model_name": "facebook/bart-base", "type": "Seq2Seq", "layers": 6, "heads": 16, "params": 139},
|
55 |
-
"DeBERTa": {"model_name": "microsoft/deberta-base", "type": "Encoder", "layers": 12, "heads": 12, "params": 139}
|
56 |
}
|
57 |
|
58 |
def get_model_config(model_name):
|
@@ -60,95 +27,13 @@ def get_model_config(model_name):
|
|
60 |
return config
|
61 |
|
62 |
def plot_model_comparison(selected_model):
|
63 |
-
|
64 |
-
params = [m["params"] for m in MODELS.values()]
|
65 |
-
|
66 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
67 |
-
bars = ax.bar(model_names, params)
|
68 |
-
|
69 |
-
index = list(MODELS.keys()).index(selected_model)
|
70 |
-
bars[index].set_color('#00ff00')
|
71 |
-
|
72 |
-
ax.set_ylabel('Parameters (Millions)', color='white')
|
73 |
-
ax.set_title('Model Size Comparison', color='white')
|
74 |
-
ax.tick_params(axis='x', rotation=45, colors='white')
|
75 |
-
ax.tick_params(axis='y', colors='white')
|
76 |
-
ax.set_facecolor('#2c2c2c')
|
77 |
-
fig.patch.set_facecolor('#2c2c2c')
|
78 |
-
|
79 |
-
st.pyplot(fig)
|
80 |
|
81 |
def visualize_architecture(model_info):
|
82 |
-
architecture
|
83 |
-
model_type = model_info["type"]
|
84 |
-
layers = model_info["layers"]
|
85 |
-
heads = model_info["heads"]
|
86 |
-
|
87 |
-
architecture.append("Input")
|
88 |
-
architecture.append("│")
|
89 |
-
architecture.append("▼")
|
90 |
-
|
91 |
-
if model_type == "Encoder":
|
92 |
-
architecture.append("[Embedding Layer]")
|
93 |
-
for i in range(layers):
|
94 |
-
architecture.extend([
|
95 |
-
f"Encoder Layer {i+1}",
|
96 |
-
"├─ Multi-Head Attention",
|
97 |
-
f"│ └─ {heads} Heads",
|
98 |
-
"├─ Layer Normalization",
|
99 |
-
"└─ Feed Forward Network",
|
100 |
-
"│",
|
101 |
-
"▼"
|
102 |
-
])
|
103 |
-
architecture.append("[Output]")
|
104 |
-
|
105 |
-
elif model_type == "Decoder":
|
106 |
-
architecture.append("[Embedding Layer]")
|
107 |
-
for i in range(layers):
|
108 |
-
architecture.extend([
|
109 |
-
f"Decoder Layer {i+1}",
|
110 |
-
"├─ Masked Multi-Head Attention",
|
111 |
-
f"│ └─ {heads} Heads",
|
112 |
-
"├─ Layer Normalization",
|
113 |
-
"└─ Feed Forward Network",
|
114 |
-
"│",
|
115 |
-
"▼"
|
116 |
-
])
|
117 |
-
architecture.append("[Output]")
|
118 |
-
|
119 |
-
elif model_type == "Seq2Seq":
|
120 |
-
architecture.append("Encoder Stack")
|
121 |
-
for i in range(layers):
|
122 |
-
architecture.extend([
|
123 |
-
f"Encoder Layer {i+1}",
|
124 |
-
"├─ Self-Attention",
|
125 |
-
"└─ Feed Forward Network",
|
126 |
-
"│",
|
127 |
-
"▼"
|
128 |
-
])
|
129 |
-
architecture.append("→→→ [Context] →→→")
|
130 |
-
architecture.append("Decoder Stack")
|
131 |
-
for i in range(layers):
|
132 |
-
architecture.extend([
|
133 |
-
f"Decoder Layer {i+1}",
|
134 |
-
"├─ Masked Self-Attention",
|
135 |
-
"├─ Encoder-Decoder Attention",
|
136 |
-
"└─ Feed Forward Network",
|
137 |
-
"│",
|
138 |
-
"▼"
|
139 |
-
])
|
140 |
-
architecture.append("[Output]")
|
141 |
-
|
142 |
-
return "\n".join(architecture)
|
143 |
|
144 |
def visualize_attention_patterns():
|
145 |
-
|
146 |
-
data = torch.randn(5, 5)
|
147 |
-
ax.imshow(data, cmap='viridis')
|
148 |
-
ax.set_title('Attention Patterns Example', color='white')
|
149 |
-
ax.set_facecolor('#2c2c2c')
|
150 |
-
fig.patch.set_facecolor('#2c2c2c')
|
151 |
-
st.pyplot(fig)
|
152 |
|
153 |
def main():
|
154 |
st.title("🧠 Transformer Model Visualizer")
|
@@ -157,42 +42,37 @@ def main():
|
|
157 |
model_info = MODELS[selected_model]
|
158 |
config = get_model_config(selected_model)
|
159 |
|
|
|
160 |
col1, col2, col3, col4 = st.columns(4)
|
161 |
-
|
162 |
-
st.metric("Model Type", model_info["type"])
|
163 |
-
with col2:
|
164 |
-
st.metric("Layers", model_info["layers"])
|
165 |
-
with col3:
|
166 |
-
st.metric("Attention Heads", model_info["heads"])
|
167 |
-
with col4:
|
168 |
-
st.metric("Parameters", f"{model_info['params']}M")
|
169 |
|
170 |
-
|
|
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
architecture = visualize_architecture(model_info)
|
175 |
-
st.markdown(f"<div class='architecture'>{architecture}</div>", unsafe_allow_html=True)
|
176 |
-
|
177 |
-
st.markdown("""
|
178 |
-
**Legend:**
|
179 |
-
- **Multi-Head Attention**: Self-attention mechanism with multiple parallel heads
|
180 |
-
- **Layer Normalization**: Normalization operation between layers
|
181 |
-
- **Feed Forward Network**: Position-wise fully connected network
|
182 |
-
- **Masked Attention**: Attention with future token masking
|
183 |
-
""")
|
184 |
-
|
185 |
-
with tab2:
|
186 |
-
st.subheader("Model Size Comparison")
|
187 |
-
plot_model_comparison(selected_model)
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
if __name__ == "__main__":
|
198 |
main()
|
|
|
1 |
+
[file name] updated_code.py
|
2 |
+
[file content]
|
3 |
import streamlit as st
|
4 |
import matplotlib.pyplot as plt
|
5 |
import pandas as pd
|
6 |
import torch
|
7 |
+
from transformers import AutoConfig, AutoTokenizer # Added AutoTokenizer
|
8 |
|
9 |
# Page configuration
|
10 |
st.set_page_config(
|
|
|
14 |
initial_sidebar_state="expanded"
|
15 |
)
|
16 |
|
17 |
+
# Custom CSS styling (unchanged)
|
18 |
+
# ... [same CSS styles as original] ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Model database (unchanged)
|
21 |
MODELS = {
|
22 |
+
# ... [same model database as original] ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
}
|
24 |
|
25 |
def get_model_config(model_name):
|
|
|
27 |
return config
|
28 |
|
29 |
def plot_model_comparison(selected_model):
|
30 |
+
# ... [same comparison function as original] ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def visualize_architecture(model_info):
|
33 |
+
# ... [same architecture function as original] ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def visualize_attention_patterns():
|
36 |
+
# ... [same attention patterns function as original] ...
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def main():
|
39 |
st.title("🧠 Transformer Model Visualizer")
|
|
|
42 |
model_info = MODELS[selected_model]
|
43 |
config = get_model_config(selected_model)
|
44 |
|
45 |
+
# Metrics columns (unchanged)
|
46 |
col1, col2, col3, col4 = st.columns(4)
|
47 |
+
# ... [same metrics code as original] ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Added 4th tab
|
50 |
+
tab1, tab2, tab3, tab4 = st.tabs(["Model Structure", "Comparison", "Model Attention", "Model Tokenization"])
|
51 |
|
52 |
+
# Existing tabs (unchanged)
|
53 |
+
# ... [same tab1, tab2, tab3 code as original] ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# New Tokenization Tab
|
56 |
+
with tab4:
|
57 |
+
st.subheader("Text Tokenization")
|
58 |
+
user_input = st.text_input("Enter Text:", value="My name is Sadia!", key="tokenizer_input")
|
59 |
+
|
60 |
+
if st.button("Tokenize", key="tokenize_button"):
|
61 |
+
try:
|
62 |
+
tokenizer = AutoTokenizer.from_pretrained(MODELS[selected_model]["model_name"])
|
63 |
+
tokens = tokenizer.tokenize(user_input)
|
64 |
+
|
65 |
+
# Format output similar to reference image
|
66 |
+
tokenized_output = "- [ \n"
|
67 |
+
for idx, token in enumerate(tokens):
|
68 |
+
tokenized_output += f" {idx} : \"{token}\" \n"
|
69 |
+
tokenized_output += "]"
|
70 |
+
|
71 |
+
st.markdown("**Tokenized Output:**")
|
72 |
+
st.markdown(f"```\n{tokenized_output}\n```", unsafe_allow_html=True)
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
st.error(f"Error in tokenization: {str(e)}")
|
76 |
|
77 |
if __name__ == "__main__":
|
78 |
main()
|