File size: 13,002 Bytes
c443e62
 
 
 
db0eecf
 
 
cf92986
c443e62
 
 
 
 
 
 
 
 
cf92986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c443e62
db0eecf
c443e62
db0eecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c443e62
 
 
 
 
 
 
cf92986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c443e62
6906b73
cf92986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6906b73
c443e62
cf92986
 
 
 
 
 
 
c443e62
db0eecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c443e62
 
 
 
 
 
cf92986
c443e62
 
cf92986
 
 
 
 
 
 
 
 
db0eecf
 
 
 
 
cf92986
 
 
 
 
 
 
 
 
 
 
 
 
c443e62
cf92986
 
 
c443e62
cf92986
 
 
 
 
 
 
c443e62
6cf26d6
cf92986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cf26d6
cf92986
 
 
 
 
 
 
db0eecf
 
 
 
 
 
 
 
 
 
c443e62
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import streamlit as st
import matplotlib.pyplot as plt
import pandas as pd
import torch
import plotly.express as px
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from transformers import AutoConfig, AutoTokenizer

# Page configuration
st.set_page_config(
    page_title="Transformer Visualizer",
    page_icon="๐Ÿง ",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS styling
st.markdown("""
<style>
    .reportview-container {
        background: linear-gradient(45deg, #1a1a1a, #4a4a4a);
    }
    .sidebar .sidebar-content {
        background: #2c2c2c !important;
    }
    h1, h2, h3, h4, h5, h6 {
        color: #00ff00 !important;
    }
    .stMetric {
        background-color: #333333;
        border-radius: 10px;
        padding: 15px;
    }
    .architecture {
        font-family: monospace;
        color: #00ff00;
        white-space: pre-wrap;
        background-color: #1a1a1a;
        padding: 20px;
        border-radius: 10px;
        border: 1px solid #00ff00;
    }
    .token-table {
        margin-top: 20px;
        border: 1px solid #00ff00;
        border-radius: 5px;
    }
</style>
""", unsafe_allow_html=True)

# Enhanced Model database
MODELS = {
    "BERT": {"model_name": "bert-base-uncased", "type": "Encoder", "layers": 12, "heads": 12, 
            "params": 109.48, "downloads": "10M+", "release_year": 2018, "gpu_req": "4GB+", 
            "cpu_req": "4 cores+", "ram_req": "8GB+"},
    "GPT-2": {"model_name": "gpt2", "type": "Decoder", "layers": 12, "heads": 12, 
             "params": 117, "downloads": "8M+", "release_year": 2019, "gpu_req": "6GB+", 
             "cpu_req": "4 cores+", "ram_req": "12GB+"},
    "T5-Small": {"model_name": "t5-small", "type": "Seq2Seq", "layers": 6, "heads": 8, 
                "params": 60, "downloads": "5M+", "release_year": 2019, "gpu_req": "3GB+", 
                "cpu_req": "2 cores+", "ram_req": "6GB+"},
    "RoBERTa": {"model_name": "roberta-base", "type": "Encoder", "layers": 12, "heads": 12, 
               "params": 125, "downloads": "7M+", "release_year": 2019, "gpu_req": "5GB+", 
               "cpu_req": "4 cores+", "ram_req": "10GB+"},
    "DistilBERT": {"model_name": "distilbert-base-uncased", "type": "Encoder", "layers": 6, 
                  "heads": 12, "params": 66, "downloads": "9M+", "release_year": 2019, 
                  "gpu_req": "2GB+", "cpu_req": "2 cores+", "ram_req": "4GB+"},
    "ALBERT": {"model_name": "albert-base-v2", "type": "Encoder", "layers": 12, "heads": 12, 
              "params": 11.8, "downloads": "3M+", "release_year": 2019, "gpu_req": "1GB+", 
              "cpu_req": "1 core+", "ram_req": "2GB+"},
    "ELECTRA": {"model_name": "google/electra-small-discriminator", "type": "Encoder", 
               "layers": 12, "heads": 12, "params": 13.5, "downloads": "2M+", 
               "release_year": 2020, "gpu_req": "2GB+", "cpu_req": "2 cores+", "ram_req": "4GB+"},
    "XLNet": {"model_name": "xlnet-base-cased", "type": "AutoRegressive", "layers": 12, 
             "heads": 12, "params": 110, "downloads": "4M+", "release_year": 2019, 
             "gpu_req": "5GB+", "cpu_req": "4 cores+", "ram_req": "8GB+"},
    "BART": {"model_name": "facebook/bart-base", "type": "Seq2Seq", "layers": 6, "heads": 16, 
            "params": 139, "downloads": "6M+", "release_year": 2020, "gpu_req": "6GB+", 
            "cpu_req": "4 cores+", "ram_req": "12GB+"},
    "DeBERTa": {"model_name": "microsoft/deberta-base", "type": "Encoder", "layers": 12, 
               "heads": 12, "params": 139, "downloads": "3M+", "release_year": 2021, 
               "gpu_req": "8GB+", "cpu_req": "6 cores+", "ram_req": "16GB+"}
}

def get_model_config(model_name):
    config = AutoConfig.from_pretrained(MODELS[model_name]["model_name"])
    return config

def plot_model_comparison(selected_model):
    model_names = list(MODELS.keys())
    params = [m["params"] for m in MODELS.values()]
    
    fig, ax = plt.subplots(figsize=(10, 6))
    bars = ax.bar(model_names, params)
    
    index = list(MODELS.keys()).index(selected_model)
    bars[index].set_color('#00ff00')
    
    ax.set_ylabel('Parameters (Millions)', color='white')
    ax.set_title('Model Size Comparison', color='white')
    ax.tick_params(axis='x', rotation=45, colors='white')
    ax.tick_params(axis='y', colors='white')
    ax.set_facecolor('#2c2c2c')
    fig.patch.set_facecolor('#2c2c2c')
    
    st.pyplot(fig)

def visualize_architecture(model_info):
    architecture = []
    model_type = model_info["type"]
    layers = model_info["layers"]
    heads = model_info["heads"]
    
    architecture.append("Input")
    architecture.append("โ”‚")
    architecture.append("โ–ผ")
    
    if model_type == "Encoder":
        architecture.append("[Embedding Layer]")
        for i in range(layers):
            architecture.extend([
                f"Encoder Layer {i+1}",
                "โ”œโ”€ Multi-Head Attention",
                f"โ”‚  โ””โ”€ {heads} Heads",
                "โ”œโ”€ Layer Normalization",
                "โ””โ”€ Feed Forward Network",
                "โ”‚",
                "โ–ผ"
            ])
        architecture.append("[Output]")
    
    elif model_type == "Decoder":
        architecture.append("[Embedding Layer]")
        for i in range(layers):
            architecture.extend([
                f"Decoder Layer {i+1}",
                "โ”œโ”€ Masked Multi-Head Attention",
                f"โ”‚  โ””โ”€ {heads} Heads",
                "โ”œโ”€ Layer Normalization",
                "โ””โ”€ Feed Forward Network",
                "โ”‚",
                "โ–ผ"
            ])
        architecture.append("[Output]")
    
    elif model_type == "Seq2Seq":
        architecture.append("Encoder Stack")
        for i in range(layers):
            architecture.extend([
                f"Encoder Layer {i+1}",
                "โ”œโ”€ Self-Attention",
                "โ””โ”€ Feed Forward Network",
                "โ”‚",
                "โ–ผ"
            ])
        architecture.append("โ†’โ†’โ†’ [Context] โ†’โ†’โ†’")
        architecture.append("Decoder Stack")
        for i in range(layers):
            architecture.extend([
                f"Decoder Layer {i+1}",
                "โ”œโ”€ Masked Self-Attention",
                "โ”œโ”€ Encoder-Decoder Attention",
                "โ””โ”€ Feed Forward Network",
                "โ”‚",
                "โ–ผ"
            ])
        architecture.append("[Output]")
    
    return "\n".join(architecture)

def visualize_attention_patterns():
    fig, ax = plt.subplots(figsize=(8, 6))
    data = torch.randn(5, 5)
    ax.imshow(data, cmap='viridis')
    ax.set_title('Attention Patterns Example', color='white')
    ax.set_facecolor('#2c2c2c')
    fig.patch.set_facecolor('#2c2c2c')
    st.pyplot(fig)

def embedding_projector():
    st.subheader("๐Ÿ” Embedding Projector")
    
    # Sample words for visualization
    words = ["king", "queen", "man", "woman", "computer", "algorithm", 
            "neural", "network", "language", "processing"]
    
    # Create dummy embeddings (3D for visualization)
    embeddings = torch.randn(len(words), 256)
    
    # Dimensionality reduction
    method = st.selectbox("Reduction Method", ["PCA", "t-SNE"])
    
    if method == "PCA":
        reduced = PCA(n_components=3).fit_transform(embeddings)
    else:
        reduced = TSNE(n_components=3).fit_transform(embeddings.numpy())
        
    # Create interactive 3D plot
    fig = px.scatter_3d(
        x=reduced[:,0], y=reduced[:,1], z=reduced[:,2],
        text=words,
        title=f"Word Embeddings ({method})"
    )
    fig.update_traces(marker=dict(size=5), textposition='top center')
    st.plotly_chart(fig, use_container_width=True)

def hardware_recommendations(model_info):
    st.subheader("๐Ÿ’ป Hardware Recommendations")
    
    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric("Minimum GPU", model_info.get("gpu_req", "4GB+"))
    with col2:
        st.metric("CPU Recommendation", model_info.get("cpu_req", "4 cores+"))
    with col3:
        st.metric("RAM Requirement", model_info.get("ram_req", "8GB+"))
    
    st.markdown("""
    **Cloud Recommendations:**
    - AWS: g4dn.xlarge instance
    - GCP: n1-standard-4 with T4 GPU
    - Azure: Standard_NC4as_T4_v3
    """)

def model_zoo_statistics():
    st.subheader("๐Ÿ“Š Model Zoo Statistics")
    
    df = pd.DataFrame.from_dict(MODELS, orient='index')
    st.dataframe(
        df[["release_year", "downloads", "params"]],
        column_config={
            "release_year": "Release Year",
            "downloads": "Downloads",
            "params": "Params (M)"
        },
        use_container_width=True,
        height=400
    )
    
    fig = px.bar(df, x=df.index, y="params", title="Model Parameters Comparison")
    st.plotly_chart(fig, use_container_width=True)

def memory_usage_estimator(model_info):
    st.subheader("๐Ÿงฎ Memory Usage Estimator")
    
    precision = st.selectbox("Precision", ["FP32", "FP16", "INT8"])
    batch_size = st.slider("Batch size", 1, 128, 8)
    
    # Memory calculation
    bytes_map = {"FP32": 4, "FP16": 2, "INT8": 1}
    estimated_memory = (model_info["params"] * 1e6 * bytes_map[precision] * batch_size) / (1024**3)
    
    col1, col2 = st.columns(2)
    with col1:
        st.metric("Estimated VRAM", f"{estimated_memory:.1f} GB")
    with col2:
        st.metric("Recommended GPU", "RTX 3090" if estimated_memory > 24 else "RTX 3060")
    
    st.progress(min(estimated_memory/40, 1.0), text="GPU Memory Utilization (of 40GB GPU)")

def main():
    st.title("๐Ÿง  Transformer Model Visualizer")
    
    selected_model = st.sidebar.selectbox("Select Model", list(MODELS.keys()))
    model_info = MODELS[selected_model]
    config = get_model_config(selected_model)
    tokenizer = AutoTokenizer.from_pretrained(model_info["model_name"])
    
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        st.metric("Model Type", model_info["type"])
    with col2:
        st.metric("Layers", model_info["layers"])
    with col3:
        st.metric("Attention Heads", model_info["heads"])
    with col4:
        st.metric("Parameters", f"{model_info['params']}M")
    
    # Updated tabs with all 7 sections
    tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs([
        "Model Structure", "Comparison", "Model Attention", 
        "Tokenization", "Embeddings", "Hardware", "Stats & Memory"
    ])
    
    with tab1:
        st.subheader("Architecture Diagram")
        architecture = visualize_architecture(model_info)
        st.markdown(f"<div class='architecture'>{architecture}</div>", unsafe_allow_html=True)
        
        st.markdown("""
        **Legend:**
        - **Multi-Head Attention**: Self-attention mechanism with multiple parallel heads
        - **Layer Normalization**: Normalization operation between layers
        - **Feed Forward Network**: Position-wise fully connected network
        - **Masked Attention**: Attention with future token masking
        """)
    
    with tab2:
        st.subheader("Model Size Comparison")
        plot_model_comparison(selected_model)
    
    with tab3:
        st.subheader("Model-specific Visualizations")
        visualize_attention_patterns()
        if selected_model == "BERT":
            st.write("BERT-specific visualization example")
        elif selected_model == "GPT-2":
            st.write("GPT-2 attention mask visualization")
    
    with tab4:
        st.subheader("๐Ÿ“ Tokenization Visualization")
        input_text = st.text_input("Enter Text:", "Hello, how are you?")
        
        col1, col2 = st.columns(2)
        with col1:
            st.markdown("**Tokenized Output**")
            tokens = tokenizer.tokenize(input_text)
            st.write(tokens)
            
        with col2:
            st.markdown("**Token IDs**")
            encoded_ids = tokenizer.encode(input_text)
            st.write(encoded_ids)
        
        st.markdown("**Token-ID Mapping**")
        token_data = pd.DataFrame({
            "Token": tokens,
            "ID": encoded_ids[1:-1] if tokenizer.cls_token else encoded_ids
        })
        st.dataframe(
            token_data,
            height=150,
            use_container_width=True,
            column_config={
                "Token": "Token",
                "ID": {"header": "ID", "help": "Numerical representation of the token"}
            }
        )
        
        st.markdown(f"""
        **Tokenizer Info:**
        - Vocabulary size: `{tokenizer.vocab_size}`
        - Special tokens: `{tokenizer.all_special_tokens}`
        - Padding token: `{tokenizer.pad_token}`
        - Max length: `{tokenizer.model_max_length}`
        """)
    
    with tab5:
        embedding_projector()
    
    with tab6:
        hardware_recommendations(model_info)
    
    with tab7:
        model_zoo_statistics()
        memory_usage_estimator(model_info)

if __name__ == "__main__":
    main()