Spaces:
Sleeping
Sleeping
File size: 13,002 Bytes
c443e62 db0eecf cf92986 c443e62 cf92986 c443e62 db0eecf c443e62 db0eecf c443e62 cf92986 c443e62 6906b73 cf92986 6906b73 c443e62 cf92986 c443e62 db0eecf c443e62 cf92986 c443e62 cf92986 db0eecf cf92986 c443e62 cf92986 c443e62 cf92986 c443e62 6cf26d6 cf92986 6cf26d6 cf92986 db0eecf c443e62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import streamlit as st
import matplotlib.pyplot as plt
import pandas as pd
import torch
import plotly.express as px
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from transformers import AutoConfig, AutoTokenizer
# Page configuration
st.set_page_config(
page_title="Transformer Visualizer",
page_icon="๐ง ",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS styling
st.markdown("""
<style>
.reportview-container {
background: linear-gradient(45deg, #1a1a1a, #4a4a4a);
}
.sidebar .sidebar-content {
background: #2c2c2c !important;
}
h1, h2, h3, h4, h5, h6 {
color: #00ff00 !important;
}
.stMetric {
background-color: #333333;
border-radius: 10px;
padding: 15px;
}
.architecture {
font-family: monospace;
color: #00ff00;
white-space: pre-wrap;
background-color: #1a1a1a;
padding: 20px;
border-radius: 10px;
border: 1px solid #00ff00;
}
.token-table {
margin-top: 20px;
border: 1px solid #00ff00;
border-radius: 5px;
}
</style>
""", unsafe_allow_html=True)
# Enhanced Model database
MODELS = {
"BERT": {"model_name": "bert-base-uncased", "type": "Encoder", "layers": 12, "heads": 12,
"params": 109.48, "downloads": "10M+", "release_year": 2018, "gpu_req": "4GB+",
"cpu_req": "4 cores+", "ram_req": "8GB+"},
"GPT-2": {"model_name": "gpt2", "type": "Decoder", "layers": 12, "heads": 12,
"params": 117, "downloads": "8M+", "release_year": 2019, "gpu_req": "6GB+",
"cpu_req": "4 cores+", "ram_req": "12GB+"},
"T5-Small": {"model_name": "t5-small", "type": "Seq2Seq", "layers": 6, "heads": 8,
"params": 60, "downloads": "5M+", "release_year": 2019, "gpu_req": "3GB+",
"cpu_req": "2 cores+", "ram_req": "6GB+"},
"RoBERTa": {"model_name": "roberta-base", "type": "Encoder", "layers": 12, "heads": 12,
"params": 125, "downloads": "7M+", "release_year": 2019, "gpu_req": "5GB+",
"cpu_req": "4 cores+", "ram_req": "10GB+"},
"DistilBERT": {"model_name": "distilbert-base-uncased", "type": "Encoder", "layers": 6,
"heads": 12, "params": 66, "downloads": "9M+", "release_year": 2019,
"gpu_req": "2GB+", "cpu_req": "2 cores+", "ram_req": "4GB+"},
"ALBERT": {"model_name": "albert-base-v2", "type": "Encoder", "layers": 12, "heads": 12,
"params": 11.8, "downloads": "3M+", "release_year": 2019, "gpu_req": "1GB+",
"cpu_req": "1 core+", "ram_req": "2GB+"},
"ELECTRA": {"model_name": "google/electra-small-discriminator", "type": "Encoder",
"layers": 12, "heads": 12, "params": 13.5, "downloads": "2M+",
"release_year": 2020, "gpu_req": "2GB+", "cpu_req": "2 cores+", "ram_req": "4GB+"},
"XLNet": {"model_name": "xlnet-base-cased", "type": "AutoRegressive", "layers": 12,
"heads": 12, "params": 110, "downloads": "4M+", "release_year": 2019,
"gpu_req": "5GB+", "cpu_req": "4 cores+", "ram_req": "8GB+"},
"BART": {"model_name": "facebook/bart-base", "type": "Seq2Seq", "layers": 6, "heads": 16,
"params": 139, "downloads": "6M+", "release_year": 2020, "gpu_req": "6GB+",
"cpu_req": "4 cores+", "ram_req": "12GB+"},
"DeBERTa": {"model_name": "microsoft/deberta-base", "type": "Encoder", "layers": 12,
"heads": 12, "params": 139, "downloads": "3M+", "release_year": 2021,
"gpu_req": "8GB+", "cpu_req": "6 cores+", "ram_req": "16GB+"}
}
def get_model_config(model_name):
config = AutoConfig.from_pretrained(MODELS[model_name]["model_name"])
return config
def plot_model_comparison(selected_model):
model_names = list(MODELS.keys())
params = [m["params"] for m in MODELS.values()]
fig, ax = plt.subplots(figsize=(10, 6))
bars = ax.bar(model_names, params)
index = list(MODELS.keys()).index(selected_model)
bars[index].set_color('#00ff00')
ax.set_ylabel('Parameters (Millions)', color='white')
ax.set_title('Model Size Comparison', color='white')
ax.tick_params(axis='x', rotation=45, colors='white')
ax.tick_params(axis='y', colors='white')
ax.set_facecolor('#2c2c2c')
fig.patch.set_facecolor('#2c2c2c')
st.pyplot(fig)
def visualize_architecture(model_info):
architecture = []
model_type = model_info["type"]
layers = model_info["layers"]
heads = model_info["heads"]
architecture.append("Input")
architecture.append("โ")
architecture.append("โผ")
if model_type == "Encoder":
architecture.append("[Embedding Layer]")
for i in range(layers):
architecture.extend([
f"Encoder Layer {i+1}",
"โโ Multi-Head Attention",
f"โ โโ {heads} Heads",
"โโ Layer Normalization",
"โโ Feed Forward Network",
"โ",
"โผ"
])
architecture.append("[Output]")
elif model_type == "Decoder":
architecture.append("[Embedding Layer]")
for i in range(layers):
architecture.extend([
f"Decoder Layer {i+1}",
"โโ Masked Multi-Head Attention",
f"โ โโ {heads} Heads",
"โโ Layer Normalization",
"โโ Feed Forward Network",
"โ",
"โผ"
])
architecture.append("[Output]")
elif model_type == "Seq2Seq":
architecture.append("Encoder Stack")
for i in range(layers):
architecture.extend([
f"Encoder Layer {i+1}",
"โโ Self-Attention",
"โโ Feed Forward Network",
"โ",
"โผ"
])
architecture.append("โโโ [Context] โโโ")
architecture.append("Decoder Stack")
for i in range(layers):
architecture.extend([
f"Decoder Layer {i+1}",
"โโ Masked Self-Attention",
"โโ Encoder-Decoder Attention",
"โโ Feed Forward Network",
"โ",
"โผ"
])
architecture.append("[Output]")
return "\n".join(architecture)
def visualize_attention_patterns():
fig, ax = plt.subplots(figsize=(8, 6))
data = torch.randn(5, 5)
ax.imshow(data, cmap='viridis')
ax.set_title('Attention Patterns Example', color='white')
ax.set_facecolor('#2c2c2c')
fig.patch.set_facecolor('#2c2c2c')
st.pyplot(fig)
def embedding_projector():
st.subheader("๐ Embedding Projector")
# Sample words for visualization
words = ["king", "queen", "man", "woman", "computer", "algorithm",
"neural", "network", "language", "processing"]
# Create dummy embeddings (3D for visualization)
embeddings = torch.randn(len(words), 256)
# Dimensionality reduction
method = st.selectbox("Reduction Method", ["PCA", "t-SNE"])
if method == "PCA":
reduced = PCA(n_components=3).fit_transform(embeddings)
else:
reduced = TSNE(n_components=3).fit_transform(embeddings.numpy())
# Create interactive 3D plot
fig = px.scatter_3d(
x=reduced[:,0], y=reduced[:,1], z=reduced[:,2],
text=words,
title=f"Word Embeddings ({method})"
)
fig.update_traces(marker=dict(size=5), textposition='top center')
st.plotly_chart(fig, use_container_width=True)
def hardware_recommendations(model_info):
st.subheader("๐ป Hardware Recommendations")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Minimum GPU", model_info.get("gpu_req", "4GB+"))
with col2:
st.metric("CPU Recommendation", model_info.get("cpu_req", "4 cores+"))
with col3:
st.metric("RAM Requirement", model_info.get("ram_req", "8GB+"))
st.markdown("""
**Cloud Recommendations:**
- AWS: g4dn.xlarge instance
- GCP: n1-standard-4 with T4 GPU
- Azure: Standard_NC4as_T4_v3
""")
def model_zoo_statistics():
st.subheader("๐ Model Zoo Statistics")
df = pd.DataFrame.from_dict(MODELS, orient='index')
st.dataframe(
df[["release_year", "downloads", "params"]],
column_config={
"release_year": "Release Year",
"downloads": "Downloads",
"params": "Params (M)"
},
use_container_width=True,
height=400
)
fig = px.bar(df, x=df.index, y="params", title="Model Parameters Comparison")
st.plotly_chart(fig, use_container_width=True)
def memory_usage_estimator(model_info):
st.subheader("๐งฎ Memory Usage Estimator")
precision = st.selectbox("Precision", ["FP32", "FP16", "INT8"])
batch_size = st.slider("Batch size", 1, 128, 8)
# Memory calculation
bytes_map = {"FP32": 4, "FP16": 2, "INT8": 1}
estimated_memory = (model_info["params"] * 1e6 * bytes_map[precision] * batch_size) / (1024**3)
col1, col2 = st.columns(2)
with col1:
st.metric("Estimated VRAM", f"{estimated_memory:.1f} GB")
with col2:
st.metric("Recommended GPU", "RTX 3090" if estimated_memory > 24 else "RTX 3060")
st.progress(min(estimated_memory/40, 1.0), text="GPU Memory Utilization (of 40GB GPU)")
def main():
st.title("๐ง Transformer Model Visualizer")
selected_model = st.sidebar.selectbox("Select Model", list(MODELS.keys()))
model_info = MODELS[selected_model]
config = get_model_config(selected_model)
tokenizer = AutoTokenizer.from_pretrained(model_info["model_name"])
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Model Type", model_info["type"])
with col2:
st.metric("Layers", model_info["layers"])
with col3:
st.metric("Attention Heads", model_info["heads"])
with col4:
st.metric("Parameters", f"{model_info['params']}M")
# Updated tabs with all 7 sections
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs([
"Model Structure", "Comparison", "Model Attention",
"Tokenization", "Embeddings", "Hardware", "Stats & Memory"
])
with tab1:
st.subheader("Architecture Diagram")
architecture = visualize_architecture(model_info)
st.markdown(f"<div class='architecture'>{architecture}</div>", unsafe_allow_html=True)
st.markdown("""
**Legend:**
- **Multi-Head Attention**: Self-attention mechanism with multiple parallel heads
- **Layer Normalization**: Normalization operation between layers
- **Feed Forward Network**: Position-wise fully connected network
- **Masked Attention**: Attention with future token masking
""")
with tab2:
st.subheader("Model Size Comparison")
plot_model_comparison(selected_model)
with tab3:
st.subheader("Model-specific Visualizations")
visualize_attention_patterns()
if selected_model == "BERT":
st.write("BERT-specific visualization example")
elif selected_model == "GPT-2":
st.write("GPT-2 attention mask visualization")
with tab4:
st.subheader("๐ Tokenization Visualization")
input_text = st.text_input("Enter Text:", "Hello, how are you?")
col1, col2 = st.columns(2)
with col1:
st.markdown("**Tokenized Output**")
tokens = tokenizer.tokenize(input_text)
st.write(tokens)
with col2:
st.markdown("**Token IDs**")
encoded_ids = tokenizer.encode(input_text)
st.write(encoded_ids)
st.markdown("**Token-ID Mapping**")
token_data = pd.DataFrame({
"Token": tokens,
"ID": encoded_ids[1:-1] if tokenizer.cls_token else encoded_ids
})
st.dataframe(
token_data,
height=150,
use_container_width=True,
column_config={
"Token": "Token",
"ID": {"header": "ID", "help": "Numerical representation of the token"}
}
)
st.markdown(f"""
**Tokenizer Info:**
- Vocabulary size: `{tokenizer.vocab_size}`
- Special tokens: `{tokenizer.all_special_tokens}`
- Padding token: `{tokenizer.pad_token}`
- Max length: `{tokenizer.model_max_length}`
""")
with tab5:
embedding_projector()
with tab6:
hardware_recommendations(model_info)
with tab7:
model_zoo_statistics()
memory_usage_estimator(model_info)
if __name__ == "__main__":
main() |