|
import streamlit as st |
|
import time |
|
import requests |
|
from streamlit.components.v1 import html |
|
import os |
|
from dotenv import load_dotenv |
|
|
|
|
|
import torchaudio |
|
import numpy as np |
|
import torch |
|
from io import BytesIO |
|
import hashlib |
|
from audio_recorder_streamlit import audio_recorder |
|
from transformers import pipeline |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@st.cache_resource |
|
def load_voice_model(): |
|
|
|
return pipeline("automatic-speech-recognition", model="openai/whisper-base") |
|
|
|
def process_audio(audio_bytes): |
|
waveform, sample_rate = torchaudio.load(BytesIO(audio_bytes)) |
|
if waveform.shape[0] > 1: |
|
waveform = torch.mean(waveform, dim=0, keepdim=True) |
|
if sample_rate != 16000: |
|
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000) |
|
waveform = resampler(waveform) |
|
return {"raw": waveform.numpy().squeeze(), "sampling_rate": 16000} |
|
|
|
def get_voice_transcription(state_key): |
|
"""Display audio recorder for a given key. |
|
If new audio is recorded, transcribe it and update the session state. |
|
""" |
|
if state_key not in st.session_state: |
|
st.session_state[state_key] = "" |
|
|
|
audio_bytes = audio_recorder(key=state_key + "_audio", |
|
pause_threshold=0.8, |
|
text="Speak to type", |
|
recording_color="#e8b62c", |
|
neutral_color="#6aa36f") |
|
if audio_bytes: |
|
current_hash = hashlib.md5(audio_bytes).hexdigest() |
|
last_hash_key = state_key + "_last_hash" |
|
if st.session_state.get(last_hash_key, "") != current_hash: |
|
st.session_state[last_hash_key] = current_hash |
|
try: |
|
audio_input = process_audio(audio_bytes) |
|
whisper = load_voice_model() |
|
transcribed_text = whisper(audio_input)["text"] |
|
st.info(f"๐ Transcribed: {transcribed_text}") |
|
|
|
st.session_state[state_key] += (" " + transcribed_text).strip() |
|
st.experimental_rerun() |
|
except Exception as e: |
|
st.error(f"Voice input error: {str(e)}") |
|
return st.session_state[state_key] |
|
|
|
|
|
|
|
|
|
|
|
@st.cache_resource |
|
def get_help_agent(): |
|
from transformers import pipeline |
|
|
|
return pipeline("conversational", model="facebook/blenderbot-400M-distill") |
|
|
|
def inject_custom_css(): |
|
st.markdown(""" |
|
<style> |
|
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap'); |
|
@import url('https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css'); |
|
|
|
* { font-family: 'Inter', sans-serif; } |
|
body { background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%); } |
|
.title { font-size: 2.8rem !important; font-weight: 800 !important; |
|
background: linear-gradient(45deg, #6C63FF, #3B82F6); |
|
-webkit-background-clip: text; -webkit-text-fill-color: transparent; |
|
text-align: center; margin: 1rem 0; letter-spacing: -1px; } |
|
.subtitle { font-size: 1.1rem !important; text-align: center; |
|
color: #64748B !important; margin-bottom: 2.5rem; animation: fadeInSlide 1s ease; } |
|
.question-box { background: white; border-radius: 20px; padding: 2rem; margin: 1.5rem 0; |
|
box-shadow: 0 10px 25px rgba(0,0,0,0.08); border: 1px solid #e2e8f0; |
|
position: relative; transition: transform 0.2s ease; color: black; } |
|
.question-box:hover { transform: translateY(-3px); } |
|
.question-box::before { content: "๐น๏ธ"; position: absolute; left: -15px; top: -15px; |
|
background: white; border-radius: 50%; padding: 8px; |
|
box-shadow: 0 4px 6px rgba(0,0,0,0.1); font-size: 1.2rem; } |
|
.input-box { background: white; border-radius: 12px; padding: 1.5rem; margin: 1rem 0; |
|
box-shadow: 0 4px 6px rgba(0,0,0,0.05); } |
|
.stTextInput input { border: 2px solid #e2e8f0 !important; border-radius: 10px !important; |
|
padding: 12px 16px !important; transition: all 0.3s ease !important; } |
|
.stTextInput input:focus { border-color: #6C63FF !important; |
|
box-shadow: 0 0 0 3px rgba(108, 99, 255, 0.2) !important; } |
|
button { background: linear-gradient(45deg, #6C63FF, #3B82F6) !important; |
|
color: white !important; border: none !important; border-radius: 10px !important; |
|
padding: 12px 24px !important; font-weight: 600 !important; |
|
transition: all 0.3s ease !important; } |
|
button:hover { transform: translateY(-2px); box-shadow: 0 5px 15px rgba(108, 99, 255, 0.3) !important; } |
|
.final-reveal { animation: fadeInUp 1s ease; font-size: 2.8rem; |
|
background: linear-gradient(45deg, #6C63FF, #3B82F6); |
|
-webkit-background-clip: text; -webkit-text-fill-color: transparent; |
|
text-align: center; margin: 2rem 0; font-weight: 800; } |
|
.help-chat { background: rgba(255,255,255,0.9); backdrop-filter: blur(10px); |
|
border-radius: 15px; padding: 1rem; margin: 1rem 0; |
|
box-shadow: 0 8px 30px rgba(0,0,0,0.12); } |
|
@keyframes fadeInSlide { 0% { opacity: 0; transform: translateY(20px); } |
|
100% { opacity: 1; transform: translateY(0); } } |
|
@keyframes fadeInUp { 0% { opacity: 0; transform: translateY(30px); } |
|
100% { opacity: 1; transform: translateY(0); } } |
|
.progress-bar { height: 6px; background: #e2e8f0; border-radius: 3px; |
|
margin: 1.5rem 0; overflow: hidden; } |
|
.progress-fill { height: 100%; background: linear-gradient(90deg, #6C63FF, #3B82F6); |
|
transition: width 0.5s ease; } |
|
.question-count { color: #6C63FF; font-weight: 600; font-size: 0.9rem; margin-bottom: 0.5rem; } |
|
|
|
|
|
/* Add these new styles for the info modal */ |
|
.info-modal { |
|
position: fixed; |
|
top: 50%; |
|
left: 50%; |
|
transform: translate(-50%, -50%); |
|
background: white; |
|
padding: 2rem; |
|
border-radius: 20px; |
|
box-shadow: 0 10px 30px rgba(0,0,0,0.2); |
|
z-index: 1000; |
|
max-width: 600px; |
|
width: 90%; |
|
max-height: 80vh; |
|
overflow-y: auto; |
|
} |
|
.info-modal-backdrop { |
|
position: fixed; |
|
top: 0; |
|
left: 0; |
|
right: 0; |
|
bottom: 0; |
|
background: rgba(0,0,0,0.5); |
|
z-index: 999; |
|
} |
|
.tech-item { |
|
margin-bottom: 1.5rem; |
|
padding-bottom: 1.5rem; |
|
border-bottom: 1px solid #e2e8f0; |
|
} |
|
.tech-item:last-child { |
|
border-bottom: none; |
|
margin-bottom: 0; |
|
padding-bottom: 0; |
|
} |
|
.tech-title { |
|
color: #6C63FF; |
|
font-weight: 600; |
|
margin-bottom: 0.5rem; |
|
display: flex; |
|
align-items: center; |
|
gap: 0.5rem; |
|
} |
|
.close-modal-btn { |
|
position: absolute; |
|
top: 1rem; |
|
right: 1rem; |
|
background: none; |
|
border: none; |
|
font-size: 1.5rem; |
|
cursor: pointer; |
|
color: #64748B; |
|
} |
|
|
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
def show_confetti(): |
|
html(""" |
|
<canvas id="confetti-canvas" class="confetti"></canvas> |
|
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/confetti.browser.min.js"></script> |
|
<script> |
|
const count = 200; |
|
const defaults = { |
|
origin: { y: 0.7 }, |
|
zIndex: 1050 |
|
}; |
|
function fire(particleRatio, opts) { |
|
confetti(Object.assign({}, defaults, opts, { |
|
particleCount: Math.floor(count * particleRatio) |
|
})); |
|
} |
|
fire(0.25, { spread: 26, startVelocity: 55 }); |
|
fire(0.2, { spread: 60 }); |
|
fire(0.35, { spread: 100, decay: 0.91, scalar: 0.8 }); |
|
fire(0.1, { spread: 120, startVelocity: 25, decay: 0.92, scalar: 1.2 }); |
|
fire(0.1, { spread: 120, startVelocity: 45 }); |
|
</script> |
|
""") |
|
|
|
def ask_llama(conversation_history, category, is_final_guess=False): |
|
api_url = "https://api.groq.com/openai/v1/chat/completions" |
|
headers = { |
|
"Authorization": "Bearer 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", |
|
"Content-Type": "application/json" |
|
} |
|
system_prompt = f"""You're playing 20 questions to guess a {category}. Follow these rules: |
|
1. Ask strategic, non-repeating yes/no questions that narrow down possibilities |
|
2. Consider all previous answers carefully before asking next question |
|
3. If you're very confident (80%+ sure), respond with "Final Guess: [your guess]" |
|
4. For places: ask about continent, climate, famous landmarks, country, city or population |
|
5. For people: ask about fictional or real, profession, gender, alive/dead, nationality, or fame |
|
6. For objects: ask about size, color, usage, material, or where it's found |
|
7. Never repeat questions and always make progress toward guessing""" |
|
if is_final_guess: |
|
prompt = f"""Based on these answers about a {category}, provide ONLY your final guess with no extra text: |
|
{conversation_history}""" |
|
else: |
|
prompt = "Ask your next strategic yes/no question that will best narrow down the possibilities." |
|
messages = [ |
|
{"role": "system", "content": system_prompt}, |
|
*conversation_history, |
|
{"role": "user", "content": prompt} |
|
] |
|
data = { |
|
"model": "llama-3.3-70b-versatile", |
|
"messages": messages, |
|
"temperature": 0.7 if is_final_guess else 0.8, |
|
"max_tokens": 100 |
|
} |
|
try: |
|
response = requests.post(api_url, headers=headers, json=data) |
|
response.raise_for_status() |
|
return response.json()["choices"][0]["message"]["content"] |
|
except Exception as e: |
|
st.error(f"Error calling Llama API: {str(e)}") |
|
return "Could not generate question" |
|
|
|
MISTRAL_API_KEY = "wm5eLl09b9I9cOxR3E9n5rrRr1CRQQjn" |
|
def ask_help_agent(query): |
|
try: |
|
url = "https://api.mistral.ai/v1/chat/completions" |
|
headers = { |
|
"Authorization": f"Bearer {MISTRAL_API_KEY}", |
|
"Content-Type": "application/json" |
|
} |
|
system_message = "You are a friendly Chatbot." |
|
messages = [{"role": "system", "content": system_message}] |
|
if "help_conversation" in st.session_state: |
|
for msg in st.session_state.help_conversation: |
|
if msg.get("query"): |
|
messages.append({"role": "user", "content": msg["query"]}) |
|
if msg.get("response"): |
|
messages.append({"role": "assistant", "content": msg["response"]}) |
|
messages.append({"role": "user", "content": query}) |
|
payload = { |
|
"model": "mistral-tiny", |
|
"messages": messages, |
|
"temperature": 0.7, |
|
"top_p": 0.95 |
|
} |
|
response = requests.post(url, headers=headers, json=payload) |
|
if response.status_code == 200: |
|
result = response.json() |
|
return result["choices"][0]["message"]["content"] |
|
else: |
|
return f"API Error {response.status_code}: {response.text}" |
|
except Exception as e: |
|
return f"Error in help agent: {str(e)}" |
|
|
|
|
|
def show_techniques_modal(): |
|
|
|
with st.expander("โน๏ธ Project Techniques & Limitations", expanded=True): |
|
st.markdown(""" |
|
**AI Models Used:** |
|
1. Groq Llama 3.3-70B - For generating strategic questions and final guesses |
|
2. Mistral Tiny - Powers the help chat assistant |
|
3. OpenAI Whisper - Converts speech to text in real-time |
|
4. Hard Prompt Tuning - Carefully engineered prompts to optimize model performance |
|
|
|
**Known Limitations:** |
|
1. Voice input may take 5-10 seconds to process sentences, which is fine. (Whisper model trained on long sentences, so it's very accurate, but good for a sentence, but not for a word) |
|
2. Single words (like "yes", "object") may take 10-20 minutes, which is irritating. |
|
3. Language Support - While Whisper understands and writes Urdu, but the game only supports English responses |
|
""") |
|
|
|
if st.button("Close", key="modal_close_btn"): |
|
pass |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
inject_custom_css() |
|
st.markdown('<div class="title">KASOTI</div>', unsafe_allow_html=True) |
|
st.markdown('<div class="subtitle">AI-Powered Guessing Game Challenge</div>', unsafe_allow_html=True) |
|
|
|
if st.button("โน๏ธ Project Techniques & Limitations", key="info_btn"): |
|
show_techniques_modal() |
|
|
|
|
|
if 'game_state' not in st.session_state: |
|
st.session_state.game_state = "start" |
|
st.session_state.questions = [] |
|
st.session_state.current_q = 0 |
|
st.session_state.answers = [] |
|
st.session_state.conversation_history = [] |
|
st.session_state.category = None |
|
st.session_state.final_guess = None |
|
st.session_state.help_conversation = [] |
|
|
|
|
|
if st.session_state.game_state == "start": |
|
with st.container(): |
|
st.markdown(""" |
|
<div class="question-box"> |
|
<h3 style="color: #6C63FF; margin-bottom: 1.5rem;">๐ฎ Welcome to KASOTI</h3> |
|
<p style="line-height: 1.6; color: #64748B;"> |
|
Think of something and I'll try to guess it in 20 questions or less!<br> |
|
Choose from these categories: |
|
</p> |
|
<div style="display: grid; gap: 1rem; margin: 2rem 0;"> |
|
<div style="padding: 1.5rem; background: #f8f9fa; border-radius: 12px;"> |
|
<h4 style="margin: 0; color: #6C63FF;">๐ง Person</h4> |
|
<p style="margin: 0.5rem 0 0; color: #64748B;">Celebrity, fictional character, historical figure</p> |
|
</div> |
|
<div style="padding: 1.5rem; background: #f8f9fa; border-radius: 12px;"> |
|
<h4 style="margin: 0; color: #6C63FF;">๐ Place</h4> |
|
<p style="margin: 0.5rem 0 0; color: #64748B;">City, country, landmark, geographical location</p> |
|
</div> |
|
<div style="padding: 1.5rem; background: #f8f9fa; border-radius: 12px;"> |
|
<h4 style="margin: 0; color: #6C63FF;">๐ฏ Object</h4> |
|
<p style="margin: 0.5rem 0 0; color: #64748B;">Everyday item, tool, vehicle</p> |
|
</div> |
|
</div> |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
with st.form("start_form"): |
|
|
|
st.markdown("#### Use Voice (English/Urdu) for Category Input") |
|
voice_category = get_voice_transcription("voice_category") |
|
|
|
category_input = st.text_input("Enter category (person/place/object):", |
|
value=voice_category.strip(), |
|
key="category_input").strip().lower() |
|
if st.form_submit_button("Start Game"): |
|
if not category_input: |
|
st.error("Please enter a category!") |
|
elif category_input not in ["person", "place", "object"]: |
|
st.error("Please enter either 'person', 'place', or 'object'!") |
|
else: |
|
st.session_state.category = category_input |
|
first_question = ask_llama([ |
|
{"role": "user", "content": "Ask your first strategic yes/no question."} |
|
], category_input) |
|
st.session_state.questions = [first_question] |
|
st.session_state.conversation_history = [ |
|
{"role": "assistant", "content": first_question} |
|
] |
|
st.session_state.game_state = "gameplay" |
|
st.experimental_rerun() |
|
|
|
|
|
elif st.session_state.game_state == "gameplay": |
|
with st.container(): |
|
progress = (st.session_state.current_q + 1) / 20 |
|
st.markdown(f""" |
|
<div class="question-count">QUESTION {st.session_state.current_q + 1} OF 20</div> |
|
<div class="progress-bar"> |
|
<div class="progress-fill" style="width: {progress * 100}%"></div> |
|
</div> |
|
""", unsafe_allow_html=True) |
|
current_question = st.session_state.questions[st.session_state.current_q] |
|
st.markdown(f''' |
|
<div class="question-box"> |
|
<div style="display: flex; align-items: center; gap: 1rem; margin-bottom: 1.5rem;"> |
|
<div style="background: #6C63FF; width: 40px; height: 40px; border-radius: 50%; |
|
display: flex; align-items: center; justify-content: center; color: white;"> |
|
<i class="fas fa-robot"></i> |
|
</div> |
|
<h3 style="margin: 0; color: #1E293B;">AI Question</h3> |
|
</div> |
|
<p style="font-size: 1.1rem; line-height: 1.6; color: #1E293B;">{current_question}</p> |
|
</div> |
|
''', unsafe_allow_html=True) |
|
if "Final Guess:" in current_question: |
|
st.session_state.final_guess = current_question.split("Final Guess:")[1].strip() |
|
st.session_state.game_state = "confirm_guess" |
|
st.experimental_rerun() |
|
with st.form("answer_form"): |
|
|
|
st.markdown("#### Use Voice (English/Urdu) for Your Answer") |
|
voice_answer = get_voice_transcription("voice_answer") |
|
answer_input = st.text_input("Your answer (yes/no/both):", |
|
value=voice_answer.strip(), |
|
key=f"answer_{st.session_state.current_q}").strip().lower() |
|
if st.form_submit_button("Submit"): |
|
if answer_input not in ["yes", "no", "both"]: |
|
st.error("Please answer with 'yes', 'no', or 'both'!") |
|
else: |
|
st.session_state.answers.append(answer_input) |
|
st.session_state.conversation_history.append( |
|
{"role": "user", "content": answer_input} |
|
) |
|
next_response = ask_llama( |
|
st.session_state.conversation_history, |
|
st.session_state.category |
|
) |
|
if "Final Guess:" in next_response: |
|
st.session_state.final_guess = next_response.split("Final Guess:")[1].strip() |
|
st.session_state.game_state = "confirm_guess" |
|
else: |
|
st.session_state.questions.append(next_response) |
|
st.session_state.conversation_history.append( |
|
{"role": "assistant", "content": next_response} |
|
) |
|
st.session_state.current_q += 1 |
|
if st.session_state.current_q >= 20: |
|
st.session_state.game_state = "result" |
|
st.experimental_rerun() |
|
with st.expander("Need Help? Chat with AI Assistant"): |
|
|
|
st.markdown("#### Use Voice (English/Urdu) for Help Query") |
|
voice_help = get_voice_transcription("voice_help") |
|
help_query = st.text_input("Enter your help query:", |
|
value=voice_help.strip(), |
|
key="help_query") |
|
if st.button("Send", key="send_help"): |
|
if help_query: |
|
help_response = ask_help_agent(help_query) |
|
st.session_state.help_conversation.append({"query": help_query, "response": help_response}) |
|
else: |
|
st.error("Please enter a query!") |
|
if st.session_state.help_conversation: |
|
for msg in st.session_state.help_conversation: |
|
st.markdown(f"**You:** {msg['query']}") |
|
st.markdown(f"**Help Assistant:** {msg['response']}") |
|
|
|
elif st.session_state.game_state == "confirm_guess": |
|
st.markdown(f''' |
|
<div class="question-box"> |
|
<div style="display: flex; align-items: center; gap: 1rem; margin-bottom: 1.5rem;"> |
|
<div style="background: #6C63FF; width: 40px; height: 40px; border-radius: 50%; |
|
display: flex; align-items: center; justify-content: center; color: white;"> |
|
<i class="fas fa-lightbulb"></i> |
|
</div> |
|
<h3 style="margin: 0; color: #1E293B;">AI's Final Guess</h3> |
|
</div> |
|
<p style="font-size: 1.2rem; line-height: 1.6; color: #1E293B;"> |
|
Is it <strong style="color: #6C63FF;">{st.session_state.final_guess}</strong>? |
|
</p> |
|
</div> |
|
''', unsafe_allow_html=True) |
|
with st.form("confirm_form"): |
|
confirm_input = st.text_input("Type your answer (yes/no/both):", key="confirm_input").strip().lower() |
|
if st.form_submit_button("Submit"): |
|
if confirm_input not in ["yes", "no", "both"]: |
|
st.error("Please answer with 'yes', 'no', or 'both'!") |
|
else: |
|
if confirm_input == "yes": |
|
st.session_state.game_state = "result" |
|
st.experimental_rerun() |
|
st.stop() |
|
else: |
|
st.session_state.conversation_history.append( |
|
{"role": "user", "content": "no"} |
|
) |
|
st.session_state.game_state = "gameplay" |
|
next_response = ask_llama( |
|
st.session_state.conversation_history, |
|
st.session_state.category |
|
) |
|
st.session_state.questions.append(next_response) |
|
st.session_state.conversation_history.append( |
|
{"role": "assistant", "content": next_response} |
|
) |
|
st.session_state.current_q += 1 |
|
st.experimental_rerun() |
|
|
|
elif st.session_state.game_state == "result": |
|
if not st.session_state.final_guess: |
|
qa_history = "\n".join( |
|
[f"Q{i+1}: {q}\nA: {a}" |
|
for i, (q, a) in enumerate(zip(st.session_state.questions, st.session_state.answers))] |
|
) |
|
final_guess = ask_llama( |
|
[{"role": "user", "content": qa_history}], |
|
st.session_state.category, |
|
is_final_guess=True |
|
) |
|
st.session_state.final_guess = final_guess.split("Final Guess:")[-1].strip() |
|
show_confetti() |
|
st.markdown(f'<div class="final-reveal">๐ It\'s...</div>', unsafe_allow_html=True) |
|
time.sleep(1) |
|
st.markdown(f'<div class="final-reveal" style="font-size:3.5rem;color:#6C63FF;">{st.session_state.final_guess}</div>', |
|
unsafe_allow_html=True) |
|
st.markdown(f"<p style='text-align:center; color:#64748B;'>Guessed in {len(st.session_state.questions)} questions</p>", |
|
unsafe_allow_html=True) |
|
if st.button("Play Again", key="play_again"): |
|
st.session_state.clear() |
|
st.experimental_rerun() |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|