File size: 24,866 Bytes
1292ed1 74a6ec1 8622a36 74a6ec1 695c0fc 97ed4c6 c1b1ffb 43ff131 c1b1ffb 43ff131 c1b1ffb 8b5587b 43ff131 4109ca4 c1b1ffb 43ff131 c1b1ffb 43ff131 c1b1ffb 43ff131 c1b1ffb 43ff131 c1b1ffb 43ff131 c1b1ffb 43ff131 c1b1ffb 8b5587b c1b1ffb 23ba6b1 b640ded 8b5587b b640ded 0bdde1a b640ded c1b1ffb 8627d53 1292ed1 cceffd8 e46e0c0 cceffd8 b640ded 3ff9487 1dd8568 8b5587b 6f37b53 8b5587b 3ff9487 cceffd8 b69bce3 cceffd8 e46e0c0 c1b1ffb 41aab98 e46e0c0 f34b1bf 767b287 c1b1ffb e46e0c0 cceffd8 e46e0c0 c1b1ffb 41aab98 1dbf749 dc7c09f c1b1ffb dc7c09f 061722d dc7c09f 41aab98 cceffd8 41aab98 c1b1ffb 41aab98 43ff131 41aab98 cceffd8 41aab98 1292ed1 c1b1ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
import streamlit as st
import time
import requests
from streamlit.components.v1 import html
import os
from dotenv import load_dotenv
# New imports for voice input
import torchaudio
import numpy as np
import torch
from io import BytesIO
import hashlib
from audio_recorder_streamlit import audio_recorder
from transformers import pipeline
######################################
# Voice Input Helper Functions
######################################
@st.cache_resource
def load_voice_model():
# Loading the Whisper model (which automatically detects both English and Urdu)
return pipeline("automatic-speech-recognition", model="openai/whisper-base")
def process_audio(audio_bytes):
waveform, sample_rate = torchaudio.load(BytesIO(audio_bytes))
if waveform.shape[0] > 1: # Convert stereo to mono
waveform = torch.mean(waveform, dim=0, keepdim=True)
if sample_rate != 16000: # Resample to 16kHz if needed
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
waveform = resampler(waveform)
return {"raw": waveform.numpy().squeeze(), "sampling_rate": 16000}
def get_voice_transcription(state_key):
"""Display audio recorder for a given key.
If new audio is recorded, transcribe it and update the session state.
"""
if state_key not in st.session_state:
st.session_state[state_key] = ""
# Use a unique key for the recorder widget
audio_bytes = audio_recorder(key=state_key + "_audio",
pause_threshold=0.8,
text="Speak to type",
recording_color="#e8b62c",
neutral_color="#6aa36f")
if audio_bytes:
current_hash = hashlib.md5(audio_bytes).hexdigest()
last_hash_key = state_key + "_last_hash"
if st.session_state.get(last_hash_key, "") != current_hash:
st.session_state[last_hash_key] = current_hash
try:
audio_input = process_audio(audio_bytes)
whisper = load_voice_model()
transcribed_text = whisper(audio_input)["text"]
st.info(f"๐ Transcribed: {transcribed_text}")
# Append (or set) new transcription
st.session_state[state_key] += (" " + transcribed_text).strip()
st.experimental_rerun()
except Exception as e:
st.error(f"Voice input error: {str(e)}")
return st.session_state[state_key]
######################################
# Existing Game Helper Functions
######################################
@st.cache_resource
def get_help_agent():
from transformers import pipeline
# Using BlenderBot 400M Distill as the public conversational model (used elsewhere)
return pipeline("conversational", model="facebook/blenderbot-400M-distill")
def inject_custom_css():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
@import url('https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css');
* { font-family: 'Inter', sans-serif; }
body { background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%); }
.title { font-size: 2.8rem !important; font-weight: 800 !important;
background: linear-gradient(45deg, #6C63FF, #3B82F6);
-webkit-background-clip: text; -webkit-text-fill-color: transparent;
text-align: center; margin: 1rem 0; letter-spacing: -1px; }
.subtitle { font-size: 1.1rem !important; text-align: center;
color: #64748B !important; margin-bottom: 2.5rem; animation: fadeInSlide 1s ease; }
.question-box { background: white; border-radius: 20px; padding: 2rem; margin: 1.5rem 0;
box-shadow: 0 10px 25px rgba(0,0,0,0.08); border: 1px solid #e2e8f0;
position: relative; transition: transform 0.2s ease; color: black; }
.question-box:hover { transform: translateY(-3px); }
.question-box::before { content: "๐น๏ธ"; position: absolute; left: -15px; top: -15px;
background: white; border-radius: 50%; padding: 8px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1); font-size: 1.2rem; }
.input-box { background: white; border-radius: 12px; padding: 1.5rem; margin: 1rem 0;
box-shadow: 0 4px 6px rgba(0,0,0,0.05); }
.stTextInput input { border: 2px solid #e2e8f0 !important; border-radius: 10px !important;
padding: 12px 16px !important; transition: all 0.3s ease !important; }
.stTextInput input:focus { border-color: #6C63FF !important;
box-shadow: 0 0 0 3px rgba(108, 99, 255, 0.2) !important; }
button { background: linear-gradient(45deg, #6C63FF, #3B82F6) !important;
color: white !important; border: none !important; border-radius: 10px !important;
padding: 12px 24px !important; font-weight: 600 !important;
transition: all 0.3s ease !important; }
button:hover { transform: translateY(-2px); box-shadow: 0 5px 15px rgba(108, 99, 255, 0.3) !important; }
.final-reveal { animation: fadeInUp 1s ease; font-size: 2.8rem;
background: linear-gradient(45deg, #6C63FF, #3B82F6);
-webkit-background-clip: text; -webkit-text-fill-color: transparent;
text-align: center; margin: 2rem 0; font-weight: 800; }
.help-chat { background: rgba(255,255,255,0.9); backdrop-filter: blur(10px);
border-radius: 15px; padding: 1rem; margin: 1rem 0;
box-shadow: 0 8px 30px rgba(0,0,0,0.12); }
@keyframes fadeInSlide { 0% { opacity: 0; transform: translateY(20px); }
100% { opacity: 1; transform: translateY(0); } }
@keyframes fadeInUp { 0% { opacity: 0; transform: translateY(30px); }
100% { opacity: 1; transform: translateY(0); } }
.progress-bar { height: 6px; background: #e2e8f0; border-radius: 3px;
margin: 1.5rem 0; overflow: hidden; }
.progress-fill { height: 100%; background: linear-gradient(90deg, #6C63FF, #3B82F6);
transition: width 0.5s ease; }
.question-count { color: #6C63FF; font-weight: 600; font-size: 0.9rem; margin-bottom: 0.5rem; }
/* Add these new styles for the info modal */
.info-modal {
position: fixed;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
background: white;
padding: 2rem;
border-radius: 20px;
box-shadow: 0 10px 30px rgba(0,0,0,0.2);
z-index: 1000;
max-width: 600px;
width: 90%;
max-height: 80vh;
overflow-y: auto;
}
.info-modal-backdrop {
position: fixed;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: rgba(0,0,0,0.5);
z-index: 999;
}
.tech-item {
margin-bottom: 1.5rem;
padding-bottom: 1.5rem;
border-bottom: 1px solid #e2e8f0;
}
.tech-item:last-child {
border-bottom: none;
margin-bottom: 0;
padding-bottom: 0;
}
.tech-title {
color: #6C63FF;
font-weight: 600;
margin-bottom: 0.5rem;
display: flex;
align-items: center;
gap: 0.5rem;
}
.close-modal-btn {
position: absolute;
top: 1rem;
right: 1rem;
background: none;
border: none;
font-size: 1.5rem;
cursor: pointer;
color: #64748B;
}
</style>
""", unsafe_allow_html=True)
def show_confetti():
html("""
<canvas id="confetti-canvas" class="confetti"></canvas>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/confetti.browser.min.js"></script>
<script>
const count = 200;
const defaults = {
origin: { y: 0.7 },
zIndex: 1050
};
function fire(particleRatio, opts) {
confetti(Object.assign({}, defaults, opts, {
particleCount: Math.floor(count * particleRatio)
}));
}
fire(0.25, { spread: 26, startVelocity: 55 });
fire(0.2, { spread: 60 });
fire(0.35, { spread: 100, decay: 0.91, scalar: 0.8 });
fire(0.1, { spread: 120, startVelocity: 25, decay: 0.92, scalar: 1.2 });
fire(0.1, { spread: 120, startVelocity: 45 });
</script>
""")
def ask_llama(conversation_history, category, is_final_guess=False):
api_url = "https://api.groq.com/openai/v1/chat/completions"
headers = {
"Authorization": "Bearer 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",
"Content-Type": "application/json"
}
system_prompt = f"""You're playing 20 questions to guess a {category}. Follow these rules:
1. Ask strategic, non-repeating yes/no questions that narrow down possibilities
2. Consider all previous answers carefully before asking next question
3. If you're very confident (80%+ sure), respond with "Final Guess: [your guess]"
4. For places: ask about continent, climate, famous landmarks, country, city or population
5. For people: ask about fictional or real, profession, gender, alive/dead, nationality, or fame
6. For objects: ask about size, color, usage, material, or where it's found
7. Never repeat questions and always make progress toward guessing"""
if is_final_guess:
prompt = f"""Based on these answers about a {category}, provide ONLY your final guess with no extra text:
{conversation_history}"""
else:
prompt = "Ask your next strategic yes/no question that will best narrow down the possibilities."
messages = [
{"role": "system", "content": system_prompt},
*conversation_history,
{"role": "user", "content": prompt}
]
data = {
"model": "llama-3.3-70b-versatile",
"messages": messages,
"temperature": 0.7 if is_final_guess else 0.8,
"max_tokens": 100
}
try:
response = requests.post(api_url, headers=headers, json=data)
response.raise_for_status()
return response.json()["choices"][0]["message"]["content"]
except Exception as e:
st.error(f"Error calling Llama API: {str(e)}")
return "Could not generate question"
MISTRAL_API_KEY = "wm5eLl09b9I9cOxR3E9n5rrRr1CRQQjn"
def ask_help_agent(query):
try:
url = "https://api.mistral.ai/v1/chat/completions"
headers = {
"Authorization": f"Bearer {MISTRAL_API_KEY}",
"Content-Type": "application/json"
}
system_message = "You are a friendly Chatbot."
messages = [{"role": "system", "content": system_message}]
if "help_conversation" in st.session_state:
for msg in st.session_state.help_conversation:
if msg.get("query"):
messages.append({"role": "user", "content": msg["query"]})
if msg.get("response"):
messages.append({"role": "assistant", "content": msg["response"]})
messages.append({"role": "user", "content": query})
payload = {
"model": "mistral-tiny",
"messages": messages,
"temperature": 0.7,
"top_p": 0.95
}
response = requests.post(url, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
return result["choices"][0]["message"]["content"]
else:
return f"API Error {response.status_code}: {response.text}"
except Exception as e:
return f"Error in help agent: {str(e)}"
def show_techniques_modal():
# Use Streamlit's expander with markdown
with st.expander("โน๏ธ Project Techniques & Limitations", expanded=True):
st.markdown("""
**AI Models Used:**
1. Groq Llama 3.3-70B - For generating strategic questions and final guesses
2. Mistral Tiny - Powers the help chat assistant
3. OpenAI Whisper - Converts speech to text in real-time
4. Hard Prompt Tuning - Carefully engineered prompts to optimize model performance
**Known Limitations:**
1. Voice input may take 5-10 seconds to process sentences, which is fine. (Whisper model trained on long sentences, so it's very accurate, but good for a sentence, but not for a word)
2. Single words (like "yes", "object") may take 10-20 minutes, which is irritating.
3. Language Support - While Whisper understands and writes Urdu, but the game only supports English responses
""")
if st.button("Close", key="modal_close_btn"):
pass # The expander will automatically close
######################################
# Main Game Logic with Voice Integration
######################################
def main():
inject_custom_css()
st.markdown('<div class="title">KASOTI</div>', unsafe_allow_html=True)
st.markdown('<div class="subtitle">AI-Powered Guessing Game Challenge</div>', unsafe_allow_html=True)
if st.button("โน๏ธ Project Techniques & Limitations", key="info_btn"):
show_techniques_modal()
if 'game_state' not in st.session_state:
st.session_state.game_state = "start"
st.session_state.questions = []
st.session_state.current_q = 0
st.session_state.answers = []
st.session_state.conversation_history = []
st.session_state.category = None
st.session_state.final_guess = None
st.session_state.help_conversation = [] # separate history for help agent
# Start screen with enhanced layout
if st.session_state.game_state == "start":
with st.container():
st.markdown("""
<div class="question-box">
<h3 style="color: #6C63FF; margin-bottom: 1.5rem;">๐ฎ Welcome to KASOTI</h3>
<p style="line-height: 1.6; color: #64748B;">
Think of something and I'll try to guess it in 20 questions or less!<br>
Choose from these categories:
</p>
<div style="display: grid; gap: 1rem; margin: 2rem 0;">
<div style="padding: 1.5rem; background: #f8f9fa; border-radius: 12px;">
<h4 style="margin: 0; color: #6C63FF;">๐ง Person</h4>
<p style="margin: 0.5rem 0 0; color: #64748B;">Celebrity, fictional character, historical figure</p>
</div>
<div style="padding: 1.5rem; background: #f8f9fa; border-radius: 12px;">
<h4 style="margin: 0; color: #6C63FF;">๐ Place</h4>
<p style="margin: 0.5rem 0 0; color: #64748B;">City, country, landmark, geographical location</p>
</div>
<div style="padding: 1.5rem; background: #f8f9fa; border-radius: 12px;">
<h4 style="margin: 0; color: #6C63FF;">๐ฏ Object</h4>
<p style="margin: 0.5rem 0 0; color: #64748B;">Everyday item, tool, vehicle</p>
</div>
</div>
</div>
""", unsafe_allow_html=True)
with st.form("start_form"):
# --- Voice Input for Category ---
st.markdown("#### Use Voice (English/Urdu) for Category Input")
voice_category = get_voice_transcription("voice_category")
# The text input now defaults to any spoken words
category_input = st.text_input("Enter category (person/place/object):",
value=voice_category.strip(),
key="category_input").strip().lower()
if st.form_submit_button("Start Game"):
if not category_input:
st.error("Please enter a category!")
elif category_input not in ["person", "place", "object"]:
st.error("Please enter either 'person', 'place', or 'object'!")
else:
st.session_state.category = category_input
first_question = ask_llama([
{"role": "user", "content": "Ask your first strategic yes/no question."}
], category_input)
st.session_state.questions = [first_question]
st.session_state.conversation_history = [
{"role": "assistant", "content": first_question}
]
st.session_state.game_state = "gameplay"
st.experimental_rerun()
# Gameplay screen with progress bar
elif st.session_state.game_state == "gameplay":
with st.container():
progress = (st.session_state.current_q + 1) / 20
st.markdown(f"""
<div class="question-count">QUESTION {st.session_state.current_q + 1} OF 20</div>
<div class="progress-bar">
<div class="progress-fill" style="width: {progress * 100}%"></div>
</div>
""", unsafe_allow_html=True)
current_question = st.session_state.questions[st.session_state.current_q]
st.markdown(f'''
<div class="question-box">
<div style="display: flex; align-items: center; gap: 1rem; margin-bottom: 1.5rem;">
<div style="background: #6C63FF; width: 40px; height: 40px; border-radius: 50%;
display: flex; align-items: center; justify-content: center; color: white;">
<i class="fas fa-robot"></i>
</div>
<h3 style="margin: 0; color: #1E293B;">AI Question</h3>
</div>
<p style="font-size: 1.1rem; line-height: 1.6; color: #1E293B;">{current_question}</p>
</div>
''', unsafe_allow_html=True)
if "Final Guess:" in current_question:
st.session_state.final_guess = current_question.split("Final Guess:")[1].strip()
st.session_state.game_state = "confirm_guess"
st.experimental_rerun()
with st.form("answer_form"):
# --- Voice Input for Answer ---
st.markdown("#### Use Voice (English/Urdu) for Your Answer")
voice_answer = get_voice_transcription("voice_answer")
answer_input = st.text_input("Your answer (yes/no/both):",
value=voice_answer.strip(),
key=f"answer_{st.session_state.current_q}").strip().lower()
if st.form_submit_button("Submit"):
if answer_input not in ["yes", "no", "both"]:
st.error("Please answer with 'yes', 'no', or 'both'!")
else:
st.session_state.answers.append(answer_input)
st.session_state.conversation_history.append(
{"role": "user", "content": answer_input}
)
next_response = ask_llama(
st.session_state.conversation_history,
st.session_state.category
)
if "Final Guess:" in next_response:
st.session_state.final_guess = next_response.split("Final Guess:")[1].strip()
st.session_state.game_state = "confirm_guess"
else:
st.session_state.questions.append(next_response)
st.session_state.conversation_history.append(
{"role": "assistant", "content": next_response}
)
st.session_state.current_q += 1
if st.session_state.current_q >= 20:
st.session_state.game_state = "result"
st.experimental_rerun()
with st.expander("Need Help? Chat with AI Assistant"):
# --- Voice Input for Help Query ---
st.markdown("#### Use Voice (English/Urdu) for Help Query")
voice_help = get_voice_transcription("voice_help")
help_query = st.text_input("Enter your help query:",
value=voice_help.strip(),
key="help_query")
if st.button("Send", key="send_help"):
if help_query:
help_response = ask_help_agent(help_query)
st.session_state.help_conversation.append({"query": help_query, "response": help_response})
else:
st.error("Please enter a query!")
if st.session_state.help_conversation:
for msg in st.session_state.help_conversation:
st.markdown(f"**You:** {msg['query']}")
st.markdown(f"**Help Assistant:** {msg['response']}")
elif st.session_state.game_state == "confirm_guess":
st.markdown(f'''
<div class="question-box">
<div style="display: flex; align-items: center; gap: 1rem; margin-bottom: 1.5rem;">
<div style="background: #6C63FF; width: 40px; height: 40px; border-radius: 50%;
display: flex; align-items: center; justify-content: center; color: white;">
<i class="fas fa-lightbulb"></i>
</div>
<h3 style="margin: 0; color: #1E293B;">AI's Final Guess</h3>
</div>
<p style="font-size: 1.2rem; line-height: 1.6; color: #1E293B;">
Is it <strong style="color: #6C63FF;">{st.session_state.final_guess}</strong>?
</p>
</div>
''', unsafe_allow_html=True)
with st.form("confirm_form"):
confirm_input = st.text_input("Type your answer (yes/no/both):", key="confirm_input").strip().lower()
if st.form_submit_button("Submit"):
if confirm_input not in ["yes", "no", "both"]:
st.error("Please answer with 'yes', 'no', or 'both'!")
else:
if confirm_input == "yes":
st.session_state.game_state = "result"
st.experimental_rerun()
st.stop()
else:
st.session_state.conversation_history.append(
{"role": "user", "content": "no"}
)
st.session_state.game_state = "gameplay"
next_response = ask_llama(
st.session_state.conversation_history,
st.session_state.category
)
st.session_state.questions.append(next_response)
st.session_state.conversation_history.append(
{"role": "assistant", "content": next_response}
)
st.session_state.current_q += 1
st.experimental_rerun()
elif st.session_state.game_state == "result":
if not st.session_state.final_guess:
qa_history = "\n".join(
[f"Q{i+1}: {q}\nA: {a}"
for i, (q, a) in enumerate(zip(st.session_state.questions, st.session_state.answers))]
)
final_guess = ask_llama(
[{"role": "user", "content": qa_history}],
st.session_state.category,
is_final_guess=True
)
st.session_state.final_guess = final_guess.split("Final Guess:")[-1].strip()
show_confetti()
st.markdown(f'<div class="final-reveal">๐ It\'s...</div>', unsafe_allow_html=True)
time.sleep(1)
st.markdown(f'<div class="final-reveal" style="font-size:3.5rem;color:#6C63FF;">{st.session_state.final_guess}</div>',
unsafe_allow_html=True)
st.markdown(f"<p style='text-align:center; color:#64748B;'>Guessed in {len(st.session_state.questions)} questions</p>",
unsafe_allow_html=True)
if st.button("Play Again", key="play_again"):
st.session_state.clear()
st.experimental_rerun()
if __name__ == "__main__":
main()
|