arjunanand13's picture
Update app.py
7cf958b verified
import os
import sqlite3
import requests
import openai
import gradio as gr
import asyncio
from gtts import gTTS
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START, END
import csv
openai.api_key = os.getenv("OPENAI_API_KEY")
def init_db_from_csv(csv_path: str = "transactions.csv") -> None:
conn = sqlite3.connect("shop.db")
cur = conn.cursor()
cur.execute(
"CREATE TABLE IF NOT EXISTS transactions (date TEXT, product TEXT, amount REAL)"
)
with open(csv_path, newline='') as f:
reader = csv.DictReader(f)
rows = [(row["date"], row["product"], float(row["amount"])) for row in reader]
cur.execute("DELETE FROM transactions")
cur.executemany(
"INSERT INTO transactions (date, product, amount) VALUES (?, ?, ?)", rows
)
conn.commit()
conn.close()
init_db_from_csv()
def db_agent(query: str) -> str:
try:
conn = sqlite3.connect("shop.db")
cur = conn.cursor()
cur.execute(
"""
SELECT product, SUM(amount) AS revenue
FROM transactions
WHERE date = date('now')
GROUP BY product
ORDER BY revenue DESC
LIMIT 1
"""
)
row = cur.fetchone()
if row:
return f"Top product today: {row[0]} with ₹{row[1]:,.2f}"
return "No transactions found for today."
except sqlite3.OperationalError as e:
return f"Database error: {e}. Please check 'transactions' table in shop.db."
def web_search_agent(query: str) -> str:
try:
resp = requests.get(
"https://serpapi.com/search",
params={"q": query, "api_key": os.getenv("SERPAPI_KEY")}
)
snippet = resp.json().get("organic_results", [{}])[0].get("snippet", "").strip()
if snippet:
return llm_agent(f"Summarize: {snippet}")
except Exception:
pass
return llm_agent(query)
def llm_agent(query: str) -> str:
response = openai.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": query},
],
temperature=0.2,
)
return response.choices[0].message.content.strip()
def stt_agent(audio_path: str) -> str:
with open(audio_path, "rb") as afile:
transcript = openai.audio.transcriptions.create(
model="whisper-1",
file=afile
)
return transcript.text.strip()
def tts_agent(text: str, lang: str = 'en') -> str:
tts = gTTS(text=text, lang=lang)
out_path = "response_audio.mp3"
tts.save(out_path)
return out_path
class State(TypedDict):
query: str
result: str
def route_fn(state: State) -> str:
q = state["query"].lower()
if any(k in q for k in ["max revenue", "revenue"]):
return "db"
if any(k in q for k in ["who", "what", "when", "where"]):
return "web"
return "llm"
def router_node(state: State) -> dict:
return {"query": state["query"]}
def db_node(state: State) -> dict:
return {"result": db_agent(state["query"]) }
def web_node(state: State) -> dict:
return {"result": web_search_agent(state["query"]) }
def llm_node(state: State) -> dict:
return {"result": llm_agent(state["query"]) }
builder = StateGraph(State)
builder.add_node("router", router_node)
builder.set_entry_point("router")
builder.set_conditional_entry_point(
route_fn,
path_map={"db": "db", "web": "web", "llm": "llm"}
)
builder.add_node("db", db_node)
builder.add_node("web", web_node)
builder.add_node("llm", llm_node)
builder.add_edge(START, "router")
builder.add_edge("db", END)
builder.add_edge("web", END)
builder.add_edge("llm", END)
graph = builder.compile()
def handle_query(audio_or_text: str):
is_audio = audio_or_text.endswith('.wav') or audio_or_text.endswith('.mp3')
if is_audio:
query = stt_agent(audio_or_text)
else:
query = audio_or_text
state = graph.invoke({"query": query})
response = state["result"]
if is_audio:
audio_path = tts_agent(response)
return response, audio_path
return response
with gr.Blocks() as demo:
gr.Markdown(
"""
**Shop Voice-Box Assistant Demo!**
**Usage Instructions:**
- Speak into your microphone or upload transactions.csv for data queries.
- Sample questions you can ask:
- What is the max revenue product today?
- Who invented the light bulb?
- Tell me a joke about cats.
"""
)
inp = gr.Audio(sources=["microphone"], type="filepath", label="Speak or type your question")
out_text = gr.Textbox(label="Answer (text)")
out_audio = gr.Audio(label="Answer (speech)")
submit = gr.Button("Submit")
submit.click(fn=handle_query, inputs=inp, outputs=[out_text, out_audio])
# with gr.Blocks() as demo:
# gr.Markdown("## Shop Voice-Box Assistant (Speech In/Out)")
# inp = gr.Audio(sources=["microphone"], type="filepath", label="Speak or type your question or upload transactions.csv separately in root")
# out_text = gr.Textbox(label="Answer (text)")
# out_audio = gr.Audio(label="Answer (speech)")
# submit = gr.Button("Submit")
# gr.Examples(
# examples=[
# ["What is the max revenue product today?"],
# ["Who invented the light bulb?"],
# ["Tell me a joke about cats."],
# ],
# inputs=inp,
# outputs=[out_text, out_audio],
# )
# submit.click(fn=handle_query, inputs=inp, outputs=[out_text, out_audio])
if __name__ == "__main__":
demo.launch(share=False, server_name="0.0.0.0", server_port=7860)