File size: 5,785 Bytes
b12e5fe
0729c66
 
 
b12e5fe
52ec688
 
7598edf
 
6219b13
52ec688
0729c66
b12e5fe
6219b13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0729c66
dd5aa4f
 
 
7598edf
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5aa4f
6219b13
 
0729c66
7b770ed
 
 
 
 
52ec688
7b770ed
 
 
 
 
b12e5fe
52ec688
dd5aa4f
0729c66
 
 
52ec688
0729c66
dd5aa4f
0729c66
dd5aa4f
b12e5fe
7598edf
 
 
 
 
 
 
52ec688
 
 
 
 
 
 
7598edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52ec688
7598edf
 
b12e5fe
7598edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52ec688
 
 
7598edf
 
 
 
 
 
 
 
 
 
 
0729c66
 
7cf958b
 
 
 
 
 
 
 
 
 
 
 
 
 
6e84209
 
 
 
 
7cf958b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e84209
e8bcf17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import sqlite3
import requests
import openai
import gradio as gr
import asyncio
from gtts import gTTS
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START, END
import csv

openai.api_key = os.getenv("OPENAI_API_KEY")

def init_db_from_csv(csv_path: str = "transactions.csv") -> None:
    conn = sqlite3.connect("shop.db")
    cur = conn.cursor()
    cur.execute(
        "CREATE TABLE IF NOT EXISTS transactions (date TEXT, product TEXT, amount REAL)"
    )
    with open(csv_path, newline='') as f:
        reader = csv.DictReader(f)
        rows = [(row["date"], row["product"], float(row["amount"])) for row in reader]
    cur.execute("DELETE FROM transactions")
    cur.executemany(
        "INSERT INTO transactions (date, product, amount) VALUES (?, ?, ?)", rows
    )
    conn.commit()
    conn.close()

init_db_from_csv()

def db_agent(query: str) -> str:
    try:
        conn = sqlite3.connect("shop.db")
        cur = conn.cursor()
        cur.execute(
            """
            SELECT product, SUM(amount) AS revenue
            FROM transactions
            WHERE date = date('now')
            GROUP BY product
            ORDER BY revenue DESC
            LIMIT 1
            """
        )
        row = cur.fetchone()
        if row:
            return f"Top product today: {row[0]} with ₹{row[1]:,.2f}"
        return "No transactions found for today."
    except sqlite3.OperationalError as e:
        return f"Database error: {e}. Please check 'transactions' table in shop.db."

def web_search_agent(query: str) -> str:
    try:
        resp = requests.get(
            "https://serpapi.com/search",
            params={"q": query, "api_key": os.getenv("SERPAPI_KEY")}  
        )
        snippet = resp.json().get("organic_results", [{}])[0].get("snippet", "").strip()
        if snippet:
            return llm_agent(f"Summarize: {snippet}")
    except Exception:
        pass
    return llm_agent(query)

def llm_agent(query: str) -> str:
    response = openai.chat.completions.create(
        model="gpt-4o-mini",
        messages=[
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": query},
        ],
        temperature=0.2,
    )
    return response.choices[0].message.content.strip()

def stt_agent(audio_path: str) -> str:
    with open(audio_path, "rb") as afile:
        transcript = openai.audio.transcriptions.create(
            model="whisper-1",
            file=afile
        )
    return transcript.text.strip()

def tts_agent(text: str, lang: str = 'en') -> str:
    tts = gTTS(text=text, lang=lang)
    out_path = "response_audio.mp3"
    tts.save(out_path)
    return out_path

class State(TypedDict):
    query: str
    result: str

def route_fn(state: State) -> str:
    q = state["query"].lower()
    if any(k in q for k in ["max revenue", "revenue"]):
        return "db"
    if any(k in q for k in ["who", "what", "when", "where"]):
        return "web"
    return "llm"

def router_node(state: State) -> dict:
    return {"query": state["query"]}

def db_node(state: State) -> dict:
    return {"result": db_agent(state["query"]) }

def web_node(state: State) -> dict:
    return {"result": web_search_agent(state["query"]) }

def llm_node(state: State) -> dict:
    return {"result": llm_agent(state["query"]) }

builder = StateGraph(State)
builder.add_node("router", router_node)
builder.set_entry_point("router")
builder.set_conditional_entry_point(
    route_fn,
    path_map={"db": "db", "web": "web", "llm": "llm"}
)
builder.add_node("db", db_node)
builder.add_node("web", web_node)
builder.add_node("llm", llm_node)
builder.add_edge(START, "router")
builder.add_edge("db", END)
builder.add_edge("web", END)
builder.add_edge("llm", END)
graph = builder.compile()

def handle_query(audio_or_text: str):
    is_audio = audio_or_text.endswith('.wav') or audio_or_text.endswith('.mp3')
    if is_audio:
        query = stt_agent(audio_or_text)
    else:
        query = audio_or_text

    state = graph.invoke({"query": query})
    response = state["result"]

    if is_audio:
        audio_path = tts_agent(response)
        return response, audio_path
    return response

with gr.Blocks() as demo:
   
    gr.Markdown(
        """
        **Shop Voice-Box Assistant Demo!**
        
        **Usage Instructions:**
        - Speak into your microphone or upload transactions.csv for data queries.
        - Sample questions you can ask:
          - What is the max revenue product today?
          - Who invented the light bulb?
          - Tell me a joke about cats.
        """
    )
    inp = gr.Audio(sources=["microphone"], type="filepath", label="Speak or type your question")
    out_text = gr.Textbox(label="Answer (text)")
    out_audio = gr.Audio(label="Answer (speech)")
    submit = gr.Button("Submit")
    submit.click(fn=handle_query, inputs=inp, outputs=[out_text, out_audio])

# with gr.Blocks() as demo:
#     gr.Markdown("## Shop Voice-Box Assistant (Speech In/Out)")
#     inp = gr.Audio(sources=["microphone"], type="filepath", label="Speak or type your question or upload transactions.csv separately in root")
#     out_text = gr.Textbox(label="Answer (text)")
#     out_audio = gr.Audio(label="Answer (speech)")
#     submit = gr.Button("Submit")
#     gr.Examples(
#         examples=[
#             ["What is the max revenue product today?"],
#             ["Who invented the light bulb?"],
#             ["Tell me a joke about cats."],
#         ],
#         inputs=inp,
#         outputs=[out_text, out_audio],
#     )
#     submit.click(fn=handle_query, inputs=inp, outputs=[out_text, out_audio])

if __name__ == "__main__":
    demo.launch(share=False, server_name="0.0.0.0", server_port=7860)