|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
import requests |
|
import json |
|
import os |
|
import threading |
|
import random |
|
import time |
|
import pytesseract |
|
import pdfplumber |
|
import docx |
|
import pandas as pd |
|
import pptx |
|
import fitz |
|
import io |
|
from pathlib import Path |
|
from PIL import Image |
|
|
|
LINUX_SERVER_HOSTS = [host for host in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if host] |
|
LINUX_SERVER_PROVIDER_KEYS = [key for key in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if key] |
|
|
|
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 6)} |
|
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)} |
|
|
|
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}")) |
|
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}")) |
|
MODEL_CHOICES = list(MODEL_MAPPING.values()) |
|
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}")) |
|
|
|
META_TAGS = os.getenv("META_TAGS") |
|
|
|
stop_event = threading.Event() |
|
session = requests.Session() |
|
|
|
def get_model_key(display_name): |
|
return next((k for k, v in MODEL_MAPPING.items() if v == display_name), MODEL_CHOICES[0]) |
|
|
|
def extract_text(file_path): |
|
ext = Path(file_path).suffix.lower() |
|
|
|
if ext == ".txt": |
|
try: |
|
with open(file_path, "r", encoding="utf-8") as file: |
|
return file.read() |
|
except: |
|
return "" |
|
|
|
elif ext == ".pdf": |
|
text = [] |
|
try: |
|
with pdfplumber.open(file_path) as pdf: |
|
for page in pdf.pages: |
|
text.append(page.extract_text() or "") |
|
if not "".join(text).strip(): |
|
text = extract_text_from_pdf_images(file_path) |
|
except: |
|
return "" |
|
return "\n".join(text) |
|
|
|
elif ext in [".doc", ".docx"]: |
|
try: |
|
doc = docx.Document(file_path) |
|
text = "\n".join([para.text for para in doc.paragraphs]) |
|
if not text.strip(): |
|
text = extract_text_from_doc_images(file_path) |
|
return text |
|
except: |
|
return "" |
|
|
|
elif ext in [".xls", ".xlsx"]: |
|
try: |
|
df = pd.read_excel(file_path) |
|
return df.to_string() |
|
except: |
|
return "" |
|
|
|
elif ext in [".ppt", ".pptx"]: |
|
try: |
|
prs = pptx.Presentation(file_path) |
|
text = [] |
|
for slide in prs.slides: |
|
for shape in slide.shapes: |
|
if hasattr(shape, "text"): |
|
text.append(shape.text) |
|
return "\n".join(text) |
|
except: |
|
return "" |
|
|
|
return "" |
|
|
|
def extract_text_from_pdf_images(pdf_path): |
|
text = [] |
|
try: |
|
doc = fitz.open(pdf_path) |
|
for page_num in range(len(doc)): |
|
pix = doc[page_num].get_pixmap() |
|
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
text.append(pytesseract.image_to_string(img)) |
|
except: |
|
return [] |
|
return text |
|
|
|
def extract_text_from_doc_images(doc_path): |
|
text = [] |
|
try: |
|
doc = docx.Document(doc_path) |
|
for rel in doc.part.rels: |
|
if "image" in doc.part.rels[rel].target_ref: |
|
img_data = doc.part.rels[rel].target_part.blob |
|
img = Image.open(io.BytesIO(img_data)) |
|
text.append(pytesseract.image_to_string(img)) |
|
except: |
|
return [] |
|
return "\n".join(text) |
|
|
|
def simulate_streaming_response(text): |
|
for line in text.splitlines(): |
|
if stop_event.is_set(): |
|
return |
|
yield line + "\n" |
|
time.sleep(0.05) |
|
|
|
def chat_with_model(history, user_input, selected_model_display): |
|
if stop_event.is_set(): |
|
yield RESPONSES["RESPONSE_1"] |
|
return |
|
|
|
if not LINUX_SERVER_PROVIDER_KEYS or not LINUX_SERVER_HOSTS: |
|
yield RESPONSES["RESPONSE_3"] |
|
return |
|
|
|
selected_model = get_model_key(selected_model_display) |
|
model_config = MODEL_CONFIG.get(selected_model, DEFAULT_CONFIG) |
|
|
|
messages = [{"role": "user", "content": user} for user, _ in history] |
|
messages += [{"role": "assistant", "content": assistant} for _, assistant in history if assistant] |
|
messages.append({"role": "user", "content": user_input}) |
|
|
|
data = {"model": selected_model, "messages": messages, **model_config} |
|
|
|
random.shuffle(LINUX_SERVER_PROVIDER_KEYS) |
|
random.shuffle(LINUX_SERVER_HOSTS) |
|
|
|
for api_key in LINUX_SERVER_PROVIDER_KEYS[:2]: |
|
for host in LINUX_SERVER_HOSTS[:2]: |
|
if stop_event.is_set(): |
|
yield RESPONSES["RESPONSE_1"] |
|
return |
|
try: |
|
response = session.post(host, json=data, headers={"Authorization": f"Bearer {api_key}"}) |
|
if stop_event.is_set(): |
|
yield RESPONSES["RESPONSE_1"] |
|
return |
|
if response.status_code < 400: |
|
ai_text = response.json().get("choices", [{}])[0].get("message", {}).get("content", RESPONSES["RESPONSE_2"]) |
|
yield from simulate_streaming_response(ai_text) |
|
return |
|
except requests.exceptions.RequestException: |
|
continue |
|
|
|
yield RESPONSES["RESPONSE_3"] |
|
|
|
def respond(user_input, file_path, history, selected_model_display): |
|
file_text = extract_text(file_path) if file_path else "" |
|
combined_input = f"{user_input}\n\n{file_text}".strip() |
|
|
|
if not combined_input: |
|
yield history, gr.update(value=""), gr.update(visible=False, interactive=False), gr.update(visible=True) |
|
return |
|
|
|
stop_event.clear() |
|
history.append([combined_input, RESPONSES["RESPONSE_8"]]) |
|
|
|
yield history, gr.update(value=""), gr.update(visible=False), gr.update(visible=True) |
|
|
|
ai_response = "" |
|
for chunk in chat_with_model(history, combined_input, selected_model_display): |
|
if stop_event.is_set(): |
|
history[-1][1] = RESPONSES["RESPONSE_1"] |
|
yield history, gr.update(value=""), gr.update(visible=True), gr.update(visible=False) |
|
return |
|
ai_response += chunk |
|
history[-1][1] = ai_response |
|
yield history, gr.update(value=""), gr.update(visible=False), gr.update(visible=True) |
|
|
|
yield history, gr.update(value=""), gr.update(visible=True), gr.update(visible=False) |
|
|
|
def stop_response(): |
|
stop_event.set() |
|
session.close() |
|
|
|
def change_model(new_model_display): |
|
return [], new_model_display |
|
|
|
def check_send_button_enabled(msg, file): |
|
return gr.update(visible=bool(msg.strip()) or bool(file), interactive=bool(msg.strip()) or bool(file)) |
|
|
|
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as demo: |
|
user_history = gr.State([]) |
|
selected_model = gr.State(MODEL_CHOICES[0]) |
|
|
|
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, show_share_button=False, scale=1, elem_id=AI_TYPES["AI_TYPE_2"]) |
|
model_dropdown = gr.Dropdown(label=AI_TYPES["AI_TYPE_3"], show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0], interactive=True) |
|
msg = gr.Textbox(label=RESPONSES["RESPONSE_4"], show_label=False, scale=0, placeholder=RESPONSES["RESPONSE_5"]) |
|
|
|
with gr.Row(): |
|
send_btn = gr.Button(RESPONSES["RESPONSE_6"], visible=True, interactive=False) |
|
stop_btn = gr.Button(RESPONSES["RESPONSE_7"], variant=RESPONSES["RESPONSE_9"], visible=False) |
|
|
|
with gr.Accordion("See more...", open=False): |
|
file_upload = gr.File(label=AI_TYPES["AI_TYPE_5"], file_count="single", type="filepath") |
|
|
|
model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, selected_model]) |
|
send_btn.click(respond, inputs=[msg, file_upload, user_history, selected_model], outputs=[chatbot, msg, send_btn, stop_btn]) |
|
msg.change(fn=check_send_button_enabled, inputs=[msg, file_upload], outputs=[send_btn]) |
|
stop_btn.click(fn=stop_response, outputs=[send_btn, stop_btn]) |
|
file_upload.change(fn=check_send_button_enabled, inputs=[msg, file_upload], outputs=[send_btn]) |
|
|
|
demo.launch(show_api=False, max_file_size="1mb") |
|
|