ai / app.py
hadadrjt's picture
ai: Support scanning documents.
60f9e8e
raw
history blame
8.7 kB
#
# Copyright (C) Hadad <[email protected]>
# All rights reserved.
#
# This code is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
# You are free to share and adapt the code for non-commercial purposes, as long as you provide appropriate credit,
# do not use it for commercial purposes, and distribute your contributions under the same license.
#
# Contributions can be made by directly submitting pull requests.
#
# For inquiries or permission requests, please contact [email protected].
#
# License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
#
import gradio as gr
import requests
import json
import os
import threading
import random
import time
import pytesseract
import pdfplumber
import docx
import pandas as pd
import pptx
import fitz
import io
from pathlib import Path
from PIL import Image
LINUX_SERVER_HOSTS = [host for host in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if host]
LINUX_SERVER_PROVIDER_KEYS = [key for key in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if key]
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 6)}
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)}
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}"))
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}"))
MODEL_CHOICES = list(MODEL_MAPPING.values())
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}"))
META_TAGS = os.getenv("META_TAGS")
stop_event = threading.Event()
session = requests.Session()
def get_model_key(display_name):
return next((k for k, v in MODEL_MAPPING.items() if v == display_name), MODEL_CHOICES[0])
def extract_text(file_path):
ext = Path(file_path).suffix.lower()
if ext == ".txt":
try:
with open(file_path, "r", encoding="utf-8") as file:
return file.read()
except:
return ""
elif ext == ".pdf":
text = []
try:
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
text.append(page.extract_text() or "")
if not "".join(text).strip():
text = extract_text_from_pdf_images(file_path)
except:
return ""
return "\n".join(text)
elif ext in [".doc", ".docx"]:
try:
doc = docx.Document(file_path)
text = "\n".join([para.text for para in doc.paragraphs])
if not text.strip():
text = extract_text_from_doc_images(file_path)
return text
except:
return ""
elif ext in [".xls", ".xlsx"]:
try:
df = pd.read_excel(file_path)
return df.to_string()
except:
return ""
elif ext in [".ppt", ".pptx"]:
try:
prs = pptx.Presentation(file_path)
text = []
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text.append(shape.text)
return "\n".join(text)
except:
return ""
return ""
def extract_text_from_pdf_images(pdf_path):
text = []
try:
doc = fitz.open(pdf_path)
for page_num in range(len(doc)):
pix = doc[page_num].get_pixmap()
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
text.append(pytesseract.image_to_string(img))
except:
return []
return text
def extract_text_from_doc_images(doc_path):
text = []
try:
doc = docx.Document(doc_path)
for rel in doc.part.rels:
if "image" in doc.part.rels[rel].target_ref:
img_data = doc.part.rels[rel].target_part.blob
img = Image.open(io.BytesIO(img_data))
text.append(pytesseract.image_to_string(img))
except:
return []
return "\n".join(text)
def simulate_streaming_response(text):
for line in text.splitlines():
if stop_event.is_set():
return
yield line + "\n"
time.sleep(0.05)
def chat_with_model(history, user_input, selected_model_display):
if stop_event.is_set():
yield RESPONSES["RESPONSE_1"]
return
if not LINUX_SERVER_PROVIDER_KEYS or not LINUX_SERVER_HOSTS:
yield RESPONSES["RESPONSE_3"]
return
selected_model = get_model_key(selected_model_display)
model_config = MODEL_CONFIG.get(selected_model, DEFAULT_CONFIG)
messages = [{"role": "user", "content": user} for user, _ in history]
messages += [{"role": "assistant", "content": assistant} for _, assistant in history if assistant]
messages.append({"role": "user", "content": user_input})
data = {"model": selected_model, "messages": messages, **model_config}
random.shuffle(LINUX_SERVER_PROVIDER_KEYS)
random.shuffle(LINUX_SERVER_HOSTS)
for api_key in LINUX_SERVER_PROVIDER_KEYS[:2]:
for host in LINUX_SERVER_HOSTS[:2]:
if stop_event.is_set():
yield RESPONSES["RESPONSE_1"]
return
try:
response = session.post(host, json=data, headers={"Authorization": f"Bearer {api_key}"})
if stop_event.is_set():
yield RESPONSES["RESPONSE_1"]
return
if response.status_code < 400:
ai_text = response.json().get("choices", [{}])[0].get("message", {}).get("content", RESPONSES["RESPONSE_2"])
yield from simulate_streaming_response(ai_text)
return
except requests.exceptions.RequestException:
continue
yield RESPONSES["RESPONSE_3"]
def respond(user_input, file_path, history, selected_model_display):
file_text = extract_text(file_path) if file_path else ""
combined_input = f"{user_input}\n\n{file_text}".strip()
if not combined_input:
yield history, gr.update(value=""), gr.update(visible=False, interactive=False), gr.update(visible=True)
return
stop_event.clear()
history.append([combined_input, RESPONSES["RESPONSE_8"]])
yield history, gr.update(value=""), gr.update(visible=False), gr.update(visible=True)
ai_response = ""
for chunk in chat_with_model(history, combined_input, selected_model_display):
if stop_event.is_set():
history[-1][1] = RESPONSES["RESPONSE_1"]
yield history, gr.update(value=""), gr.update(visible=True), gr.update(visible=False)
return
ai_response += chunk
history[-1][1] = ai_response
yield history, gr.update(value=""), gr.update(visible=False), gr.update(visible=True)
yield history, gr.update(value=""), gr.update(visible=True), gr.update(visible=False)
def stop_response():
stop_event.set()
session.close()
def change_model(new_model_display):
return [], new_model_display
def check_send_button_enabled(msg, file):
return gr.update(visible=bool(msg.strip()) or bool(file), interactive=bool(msg.strip()) or bool(file))
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as demo:
user_history = gr.State([])
selected_model = gr.State(MODEL_CHOICES[0])
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, show_share_button=False, scale=1, elem_id=AI_TYPES["AI_TYPE_2"])
model_dropdown = gr.Dropdown(label=AI_TYPES["AI_TYPE_3"], show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0], interactive=True)
msg = gr.Textbox(label=RESPONSES["RESPONSE_4"], show_label=False, scale=0, placeholder=RESPONSES["RESPONSE_5"])
with gr.Row():
send_btn = gr.Button(RESPONSES["RESPONSE_6"], visible=True, interactive=False)
stop_btn = gr.Button(RESPONSES["RESPONSE_7"], variant=RESPONSES["RESPONSE_9"], visible=False)
with gr.Accordion("See more...", open=False):
file_upload = gr.File(label=AI_TYPES["AI_TYPE_5"], file_count="single", type="filepath")
model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, selected_model])
send_btn.click(respond, inputs=[msg, file_upload, user_history, selected_model], outputs=[chatbot, msg, send_btn, stop_btn])
msg.change(fn=check_send_button_enabled, inputs=[msg, file_upload], outputs=[send_btn])
stop_btn.click(fn=stop_response, outputs=[send_btn, stop_btn])
file_upload.change(fn=check_send_button_enabled, inputs=[msg, file_upload], outputs=[send_btn])
demo.launch(show_api=False, max_file_size="1mb")