File size: 8,700 Bytes
29232b4 5456854 60f9e8e 5456854 7d6f26e 5456854 60f9e8e 5456854 b58bc4a 5456854 7d6f26e 5456854 60f9e8e 7d6f26e 5456854 7d6f26e 5456854 7d6f26e 5456854 60f9e8e 5456854 60f9e8e 5456854 60f9e8e 5456854 60f9e8e 5456854 3d1964a 5456854 cf13d53 5456854 60f9e8e 5456854 60f9e8e 5456854 60f9e8e 5456854 60f9e8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
#
# Copyright (C) Hadad <[email protected]>
# All rights reserved.
#
# This code is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
# You are free to share and adapt the code for non-commercial purposes, as long as you provide appropriate credit,
# do not use it for commercial purposes, and distribute your contributions under the same license.
#
# Contributions can be made by directly submitting pull requests.
#
# For inquiries or permission requests, please contact [email protected].
#
# License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
#
import gradio as gr
import requests
import json
import os
import threading
import random
import time
import pytesseract
import pdfplumber
import docx
import pandas as pd
import pptx
import fitz
import io
from pathlib import Path
from PIL import Image
LINUX_SERVER_HOSTS = [host for host in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if host]
LINUX_SERVER_PROVIDER_KEYS = [key for key in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if key]
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 6)}
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)}
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}"))
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}"))
MODEL_CHOICES = list(MODEL_MAPPING.values())
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}"))
META_TAGS = os.getenv("META_TAGS")
stop_event = threading.Event()
session = requests.Session()
def get_model_key(display_name):
return next((k for k, v in MODEL_MAPPING.items() if v == display_name), MODEL_CHOICES[0])
def extract_text(file_path):
ext = Path(file_path).suffix.lower()
if ext == ".txt":
try:
with open(file_path, "r", encoding="utf-8") as file:
return file.read()
except:
return ""
elif ext == ".pdf":
text = []
try:
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
text.append(page.extract_text() or "")
if not "".join(text).strip():
text = extract_text_from_pdf_images(file_path)
except:
return ""
return "\n".join(text)
elif ext in [".doc", ".docx"]:
try:
doc = docx.Document(file_path)
text = "\n".join([para.text for para in doc.paragraphs])
if not text.strip():
text = extract_text_from_doc_images(file_path)
return text
except:
return ""
elif ext in [".xls", ".xlsx"]:
try:
df = pd.read_excel(file_path)
return df.to_string()
except:
return ""
elif ext in [".ppt", ".pptx"]:
try:
prs = pptx.Presentation(file_path)
text = []
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text.append(shape.text)
return "\n".join(text)
except:
return ""
return ""
def extract_text_from_pdf_images(pdf_path):
text = []
try:
doc = fitz.open(pdf_path)
for page_num in range(len(doc)):
pix = doc[page_num].get_pixmap()
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
text.append(pytesseract.image_to_string(img))
except:
return []
return text
def extract_text_from_doc_images(doc_path):
text = []
try:
doc = docx.Document(doc_path)
for rel in doc.part.rels:
if "image" in doc.part.rels[rel].target_ref:
img_data = doc.part.rels[rel].target_part.blob
img = Image.open(io.BytesIO(img_data))
text.append(pytesseract.image_to_string(img))
except:
return []
return "\n".join(text)
def simulate_streaming_response(text):
for line in text.splitlines():
if stop_event.is_set():
return
yield line + "\n"
time.sleep(0.05)
def chat_with_model(history, user_input, selected_model_display):
if stop_event.is_set():
yield RESPONSES["RESPONSE_1"]
return
if not LINUX_SERVER_PROVIDER_KEYS or not LINUX_SERVER_HOSTS:
yield RESPONSES["RESPONSE_3"]
return
selected_model = get_model_key(selected_model_display)
model_config = MODEL_CONFIG.get(selected_model, DEFAULT_CONFIG)
messages = [{"role": "user", "content": user} for user, _ in history]
messages += [{"role": "assistant", "content": assistant} for _, assistant in history if assistant]
messages.append({"role": "user", "content": user_input})
data = {"model": selected_model, "messages": messages, **model_config}
random.shuffle(LINUX_SERVER_PROVIDER_KEYS)
random.shuffle(LINUX_SERVER_HOSTS)
for api_key in LINUX_SERVER_PROVIDER_KEYS[:2]:
for host in LINUX_SERVER_HOSTS[:2]:
if stop_event.is_set():
yield RESPONSES["RESPONSE_1"]
return
try:
response = session.post(host, json=data, headers={"Authorization": f"Bearer {api_key}"})
if stop_event.is_set():
yield RESPONSES["RESPONSE_1"]
return
if response.status_code < 400:
ai_text = response.json().get("choices", [{}])[0].get("message", {}).get("content", RESPONSES["RESPONSE_2"])
yield from simulate_streaming_response(ai_text)
return
except requests.exceptions.RequestException:
continue
yield RESPONSES["RESPONSE_3"]
def respond(user_input, file_path, history, selected_model_display):
file_text = extract_text(file_path) if file_path else ""
combined_input = f"{user_input}\n\n{file_text}".strip()
if not combined_input:
yield history, gr.update(value=""), gr.update(visible=False, interactive=False), gr.update(visible=True)
return
stop_event.clear()
history.append([combined_input, RESPONSES["RESPONSE_8"]])
yield history, gr.update(value=""), gr.update(visible=False), gr.update(visible=True)
ai_response = ""
for chunk in chat_with_model(history, combined_input, selected_model_display):
if stop_event.is_set():
history[-1][1] = RESPONSES["RESPONSE_1"]
yield history, gr.update(value=""), gr.update(visible=True), gr.update(visible=False)
return
ai_response += chunk
history[-1][1] = ai_response
yield history, gr.update(value=""), gr.update(visible=False), gr.update(visible=True)
yield history, gr.update(value=""), gr.update(visible=True), gr.update(visible=False)
def stop_response():
stop_event.set()
session.close()
def change_model(new_model_display):
return [], new_model_display
def check_send_button_enabled(msg, file):
return gr.update(visible=bool(msg.strip()) or bool(file), interactive=bool(msg.strip()) or bool(file))
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as demo:
user_history = gr.State([])
selected_model = gr.State(MODEL_CHOICES[0])
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, show_share_button=False, scale=1, elem_id=AI_TYPES["AI_TYPE_2"])
model_dropdown = gr.Dropdown(label=AI_TYPES["AI_TYPE_3"], show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0], interactive=True)
msg = gr.Textbox(label=RESPONSES["RESPONSE_4"], show_label=False, scale=0, placeholder=RESPONSES["RESPONSE_5"])
with gr.Row():
send_btn = gr.Button(RESPONSES["RESPONSE_6"], visible=True, interactive=False)
stop_btn = gr.Button(RESPONSES["RESPONSE_7"], variant=RESPONSES["RESPONSE_9"], visible=False)
with gr.Accordion("See more...", open=False):
file_upload = gr.File(label=AI_TYPES["AI_TYPE_5"], file_count="single", type="filepath")
model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, selected_model])
send_btn.click(respond, inputs=[msg, file_upload, user_history, selected_model], outputs=[chatbot, msg, send_btn, stop_btn])
msg.change(fn=check_send_button_enabled, inputs=[msg, file_upload], outputs=[send_btn])
stop_btn.click(fn=stop_response, outputs=[send_btn, stop_btn])
file_upload.change(fn=check_send_button_enabled, inputs=[msg, file_upload], outputs=[send_btn])
demo.launch(show_api=False, max_file_size="1mb")
|