textgames / agents /_reference.py
fhudi's picture
Upload folder using huggingface_hub
8bf595d verified
import os
import torch
import random
import numpy as np
import argparse
import json
import cohere
from openai import OpenAI
from tqdm import tqdm
from collections import Counter
from transformers import LlamaForCausalLM, AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM
import hashlib
OPENAI_TOKEN = ""
COHERE_TOKEN = ""
HF_TOKEN = ""
def argmax(array):
"""argmax with deterministic pseudorandom tie breaking."""
max_indices = np.arange(len(array))[array == np.max(array)]
idx = int(hashlib.sha256(np.asarray(array).tobytes()).hexdigest(), 16) % len(max_indices)
return max_indices[idx]
def logsumexp(x):
c = x.max()
return c + np.log(np.sum(np.exp(x - c)))
def normalize(x):
x = np.array(x)
return np.exp(x - logsumexp(x))
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def get_commandr_chat_response(gen_model, gen_model_checkpoint, text, seed):
response = gen_model.chat(
model="command-r",
message=text,
temperature=0,
max_tokens=64,
seed=seed,
p=1
)
return response.text
def get_mt0_response(gen_model, tokenizer, gen_model_checkpoint, text, seed):
input_ids = tokenizer.encode(text, return_tensors="pt").to(gen_model.device)
outputs = gen_model.generate(
input_ids,
max_new_tokens=10,
do_sample=True,
temperature=0.2,
top_p=1
)
response = outputs[0]
return tokenizer.decode(response, skip_special_tokens=True)
def get_gemma_response(gen_model, tokenizer, gen_model_checkpoint, text, seed):
messages = [
{"role": "user", "content": text},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(gen_model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = gen_model.generate(
input_ids,
max_new_tokens=10,
eos_token_id=terminators,
do_sample=True,
temperature=0.2,
top_p=1
)
response = outputs[0][input_ids.shape[-1]:]
return tokenizer.decode(response, skip_special_tokens=True)
def get_mistral_instruct_chat_response(gen_model, tokenizer, gen_model_checkpoint, text, seed):
messages = [
{"role": "user", "content": text},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(gen_model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = gen_model.generate(
input_ids,
max_new_tokens=10,
eos_token_id=terminators,
do_sample=True,
temperature=0.2,
top_p=1
)
response = outputs[0][input_ids.shape[-1]:]
return tokenizer.decode(response, skip_special_tokens=True)
def get_llama3_instruct_chat_response(gen_model, tokenizer, gen_model_checkpoint, text, seed):
messages = [
{"role": "user", "content": text},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(gen_model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = gen_model.generate(
input_ids,
max_new_tokens=10,
eos_token_id=terminators,
do_sample=True,
temperature=0.2,
top_p=1
)
response = outputs[0][input_ids.shape[-1]:]
return tokenizer.decode(response, skip_special_tokens=True)
def get_openai_chat_response(gen_model, gen_model_checkpoint, text, seed):
messages = [
{
"role": "user",
"content": text
}
]
response = gen_model.chat.completions.create(
model=gen_model_checkpoint,
messages=messages,
temperature=0,
max_tokens=64,
top_p=1,
seed=seed
)
return response.choices[0].message.content
def load_model(gen_model_checkpoint, load_in_8bit=False):
gen_model = None
tokenizer = None
if "mistralai/Mistral-7B-Instruct-v0.3" in gen_model_checkpoint or "meta-llama/Meta-Llama-3-8B-Instruct" in gen_model_checkpoint or "google/gemma-1.1-7b-it" in gen_model_checkpoint:
if load_in_8bit:
gen_model = AutoModelForCausalLM.from_pretrained(gen_model_checkpoint, token=HF_TOKEN, device_map="auto",
load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(gen_model_checkpoint, token=HF_TOKEN, device_map="auto",
load_in_8bit=True)
else:
gen_model = AutoModelForCausalLM.from_pretrained(gen_model_checkpoint, token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(gen_model_checkpoint, token=HF_TOKEN)
elif "CohereForAI/aya-101" in gen_model_checkpoint or "bigscience/mt0" in gen_model_checkpoint:
if load_in_8bit:
gen_model = AutoModelForSeq2SeqLM.from_pretrained(gen_model_checkpoint, token=HF_TOKEN, device_map="auto",
load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(gen_model_checkpoint, token=HF_TOKEN, device_map="auto",
load_in_8bit=True)
else:
gen_model = AutoModelForSeq2SeqLM.from_pretrained(gen_model_checkpoint, token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(gen_model_checkpoint, token=HF_TOKEN)
elif "facebook/xglm" in gen_model_checkpoint or "bigscience/bloomz" in gen_model_checkpoint or "aya-23-8B" in args.gen_model_checkpoint:
if load_in_8bit:
gen_model = AutoModelForCausalLM.from_pretrained(gen_model_checkpoint, token=HF_TOKEN, device_map="auto",
load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(gen_model_checkpoint, token=HF_TOKEN, device_map="auto",
load_in_8bit=True)
else:
gen_model = AutoModelForCausalLM.from_pretrained(gen_model_checkpoint, token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(gen_model_checkpoint, token=HF_TOKEN)
elif "gpt-3.5-turbo" in gen_model_checkpoint or "gpt-4" in gen_model_checkpoint:
gen_model = OpenAI(api_key=OPENAI_TOKEN)
elif "command-r" in gen_model_checkpoint:
gen_model = cohere.Client(COHERE_TOKEN)
return gen_model, tokenizer