File size: 6,814 Bytes
8bf595d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import os
import torch
import random
import numpy as np
import argparse
import json
import cohere
from openai import OpenAI
from tqdm import tqdm
from collections import Counter
from transformers import LlamaForCausalLM, AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM
import hashlib
OPENAI_TOKEN = ""
COHERE_TOKEN = ""
HF_TOKEN = ""
def argmax(array):
"""argmax with deterministic pseudorandom tie breaking."""
max_indices = np.arange(len(array))[array == np.max(array)]
idx = int(hashlib.sha256(np.asarray(array).tobytes()).hexdigest(), 16) % len(max_indices)
return max_indices[idx]
def logsumexp(x):
c = x.max()
return c + np.log(np.sum(np.exp(x - c)))
def normalize(x):
x = np.array(x)
return np.exp(x - logsumexp(x))
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def get_commandr_chat_response(gen_model, gen_model_checkpoint, text, seed):
response = gen_model.chat(
model="command-r",
message=text,
temperature=0,
max_tokens=64,
seed=seed,
p=1
)
return response.text
def get_mt0_response(gen_model, tokenizer, gen_model_checkpoint, text, seed):
input_ids = tokenizer.encode(text, return_tensors="pt").to(gen_model.device)
outputs = gen_model.generate(
input_ids,
max_new_tokens=10,
do_sample=True,
temperature=0.2,
top_p=1
)
response = outputs[0]
return tokenizer.decode(response, skip_special_tokens=True)
def get_gemma_response(gen_model, tokenizer, gen_model_checkpoint, text, seed):
messages = [
{"role": "user", "content": text},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(gen_model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = gen_model.generate(
input_ids,
max_new_tokens=10,
eos_token_id=terminators,
do_sample=True,
temperature=0.2,
top_p=1
)
response = outputs[0][input_ids.shape[-1]:]
return tokenizer.decode(response, skip_special_tokens=True)
def get_mistral_instruct_chat_response(gen_model, tokenizer, gen_model_checkpoint, text, seed):
messages = [
{"role": "user", "content": text},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(gen_model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = gen_model.generate(
input_ids,
max_new_tokens=10,
eos_token_id=terminators,
do_sample=True,
temperature=0.2,
top_p=1
)
response = outputs[0][input_ids.shape[-1]:]
return tokenizer.decode(response, skip_special_tokens=True)
def get_llama3_instruct_chat_response(gen_model, tokenizer, gen_model_checkpoint, text, seed):
messages = [
{"role": "user", "content": text},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(gen_model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = gen_model.generate(
input_ids,
max_new_tokens=10,
eos_token_id=terminators,
do_sample=True,
temperature=0.2,
top_p=1
)
response = outputs[0][input_ids.shape[-1]:]
return tokenizer.decode(response, skip_special_tokens=True)
def get_openai_chat_response(gen_model, gen_model_checkpoint, text, seed):
messages = [
{
"role": "user",
"content": text
}
]
response = gen_model.chat.completions.create(
model=gen_model_checkpoint,
messages=messages,
temperature=0,
max_tokens=64,
top_p=1,
seed=seed
)
return response.choices[0].message.content
def load_model(gen_model_checkpoint, load_in_8bit=False):
gen_model = None
tokenizer = None
if "mistralai/Mistral-7B-Instruct-v0.3" in gen_model_checkpoint or "meta-llama/Meta-Llama-3-8B-Instruct" in gen_model_checkpoint or "google/gemma-1.1-7b-it" in gen_model_checkpoint:
if load_in_8bit:
gen_model = AutoModelForCausalLM.from_pretrained(gen_model_checkpoint, token=HF_TOKEN, device_map="auto",
load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(gen_model_checkpoint, token=HF_TOKEN, device_map="auto",
load_in_8bit=True)
else:
gen_model = AutoModelForCausalLM.from_pretrained(gen_model_checkpoint, token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(gen_model_checkpoint, token=HF_TOKEN)
elif "CohereForAI/aya-101" in gen_model_checkpoint or "bigscience/mt0" in gen_model_checkpoint:
if load_in_8bit:
gen_model = AutoModelForSeq2SeqLM.from_pretrained(gen_model_checkpoint, token=HF_TOKEN, device_map="auto",
load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(gen_model_checkpoint, token=HF_TOKEN, device_map="auto",
load_in_8bit=True)
else:
gen_model = AutoModelForSeq2SeqLM.from_pretrained(gen_model_checkpoint, token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(gen_model_checkpoint, token=HF_TOKEN)
elif "facebook/xglm" in gen_model_checkpoint or "bigscience/bloomz" in gen_model_checkpoint or "aya-23-8B" in args.gen_model_checkpoint:
if load_in_8bit:
gen_model = AutoModelForCausalLM.from_pretrained(gen_model_checkpoint, token=HF_TOKEN, device_map="auto",
load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(gen_model_checkpoint, token=HF_TOKEN, device_map="auto",
load_in_8bit=True)
else:
gen_model = AutoModelForCausalLM.from_pretrained(gen_model_checkpoint, token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(gen_model_checkpoint, token=HF_TOKEN)
elif "gpt-3.5-turbo" in gen_model_checkpoint or "gpt-4" in gen_model_checkpoint:
gen_model = OpenAI(api_key=OPENAI_TOKEN)
elif "command-r" in gen_model_checkpoint:
gen_model = cohere.Client(COHERE_TOKEN)
return gen_model, tokenizer
|