Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel | |
from huggingface_hub import login | |
# Constants | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
HF_TOKEN = os.environ.get("HF_TOKEN", "") # Hugging Face token | |
# Login if token is provided | |
if HF_TOKEN: | |
login(token=HF_TOKEN) | |
class GAIACodeAgent: | |
def __init__(self): | |
"""Initialize the advanced agent with tools and capabilities""" | |
model = InferenceClientModel() | |
self.agent = CodeAgent( | |
tools=[DuckDuckGoSearchTool()], | |
model=model | |
) | |
def __call__(self, question: str) -> str: | |
"""Process a question and return an answer""" | |
try: | |
print(f"Agent received question: {question[:50]}...") | |
# Improve the prompt to get better accuracy on exact match questions | |
enriched_prompt = ( | |
f"Answer the following question accurately and concisely. " | |
f"Provide a straightforward answer without unnecessary elaboration. " | |
f"The answer will be evaluated for exact match accuracy.\n\n" | |
f"Question: {question}\n\n" | |
f"Answer: " | |
) | |
# Run the agent with the enriched prompt | |
response = self.agent.run(enriched_prompt) | |
# Clean up response to improve exact match chances | |
cleaned_response = response.strip() | |
print(f"Agent returning answer: {cleaned_response[:50]}...") | |
return cleaned_response | |
except Exception as e: | |
error_msg = f"Error: {str(e)}" | |
print(error_msg) | |
return error_msg | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the GAIACodeAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# Determine HF Space Runtime URL and Repo URL | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = profile.username | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent | |
try: | |
agent = GAIACodeAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co./spaces/{space_id}/tree/main" | |
print(f"Agent code URL: {agent_code}") | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
def query_single_agent(question): | |
"""Run agent on a single question for testing""" | |
try: | |
agent = GAIACodeAgent() | |
response = agent(question) | |
return response | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Build Gradio Interface | |
with gr.Blocks(title="GAIA Code Agent Evaluation") as demo: | |
gr.Markdown("# GAIA Code Agent Evaluation") | |
gr.Markdown( | |
""" | |
This application helps you evaluate a code agent on the GAIA benchmark. | |
## Instructions: | |
1. Log in to your Hugging Face account using the button below | |
2. You can test the agent with a single question in the "Test Agent" tab | |
3. Use the "Run Evaluation" tab to run the agent on all GAIA questions and submit answers | |
""" | |
) | |
with gr.Tab("Test Agent"): | |
question_input = gr.Textbox( | |
label="Enter a question", | |
placeholder="How many seconds would it take for a leopard at full speed to run through Pont des Arts?" | |
) | |
query_button = gr.Button("Get Answer") | |
response_output = gr.Textbox(label="Agent Response", lines=10) | |
query_button.click(query_single_agent, inputs=question_input, outputs=response_output) | |
with gr.Tab("Run Evaluation"): | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) | |
# Start the app | |
if __name__ == "__main__": | |
demo.launch() |