Spaces:
Runtime error
Runtime error
File size: 8,061 Bytes
7ce3c76 a9bddce 7ce3c76 a9bddce 7ce3c76 ae5870d a9bddce 7ce3c76 a9bddce 7ce3c76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel
from huggingface_hub import login
# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
HF_TOKEN = os.environ.get("HF_TOKEN", "") # Hugging Face token
# Login if token is provided
if HF_TOKEN:
login(token=HF_TOKEN)
class GAIACodeAgent:
def __init__(self):
"""Initialize the advanced agent with tools and capabilities"""
model = InferenceClientModel()
self.agent = CodeAgent(
tools=[DuckDuckGoSearchTool()],
model=model
)
def __call__(self, question: str) -> str:
"""Process a question and return an answer"""
try:
print(f"Agent received question: {question[:50]}...")
# Improve the prompt to get better accuracy on exact match questions
enriched_prompt = (
f"Answer the following question accurately and concisely. "
f"Provide a straightforward answer without unnecessary elaboration. "
f"The answer will be evaluated for exact match accuracy.\n\n"
f"Question: {question}\n\n"
f"Answer: "
)
# Run the agent with the enriched prompt
response = self.agent.run(enriched_prompt)
# Clean up response to improve exact match chances
cleaned_response = response.strip()
print(f"Agent returning answer: {cleaned_response[:50]}...")
return cleaned_response
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
return error_msg
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the GAIACodeAgent on them, submits all answers,
and displays the results.
"""
# Determine HF Space Runtime URL and Repo URL
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = GAIACodeAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co./spaces/{space_id}/tree/main"
print(f"Agent code URL: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
def query_single_agent(question):
"""Run agent on a single question for testing"""
try:
agent = GAIACodeAgent()
response = agent(question)
return response
except Exception as e:
return f"Error: {str(e)}"
# Build Gradio Interface
with gr.Blocks(title="GAIA Code Agent Evaluation") as demo:
gr.Markdown("# GAIA Code Agent Evaluation")
gr.Markdown(
"""
This application helps you evaluate a code agent on the GAIA benchmark.
## Instructions:
1. Log in to your Hugging Face account using the button below
2. You can test the agent with a single question in the "Test Agent" tab
3. Use the "Run Evaluation" tab to run the agent on all GAIA questions and submit answers
"""
)
with gr.Tab("Test Agent"):
question_input = gr.Textbox(
label="Enter a question",
placeholder="How many seconds would it take for a leopard at full speed to run through Pont des Arts?"
)
query_button = gr.Button("Get Answer")
response_output = gr.Textbox(label="Agent Response", lines=10)
query_button.click(query_single_agent, inputs=question_input, outputs=response_output)
with gr.Tab("Run Evaluation"):
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
# Start the app
if __name__ == "__main__":
demo.launch() |