File size: 8,061 Bytes
7ce3c76
a9bddce
7ce3c76
 
 
 
a9bddce
7ce3c76
 
ae5870d
a9bddce
7ce3c76
 
 
a9bddce
7ce3c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel
from huggingface_hub import login

# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
HF_TOKEN = os.environ.get("HF_TOKEN", "")  # Hugging Face token

# Login if token is provided
if HF_TOKEN:
    login(token=HF_TOKEN)

class GAIACodeAgent:
    def __init__(self):
        """Initialize the advanced agent with tools and capabilities"""
        model = InferenceClientModel()
        self.agent = CodeAgent(
            tools=[DuckDuckGoSearchTool()],
            model=model
        )
    
    def __call__(self, question: str) -> str:
        """Process a question and return an answer"""
        try:
            print(f"Agent received question: {question[:50]}...")
            # Improve the prompt to get better accuracy on exact match questions
            enriched_prompt = (
                f"Answer the following question accurately and concisely. "
                f"Provide a straightforward answer without unnecessary elaboration. "
                f"The answer will be evaluated for exact match accuracy.\n\n"
                f"Question: {question}\n\n"
                f"Answer: "
            )
            
            # Run the agent with the enriched prompt
            response = self.agent.run(enriched_prompt)
            
            # Clean up response to improve exact match chances
            cleaned_response = response.strip()
            print(f"Agent returning answer: {cleaned_response[:50]}...")
            return cleaned_response
        except Exception as e:
            error_msg = f"Error: {str(e)}"
            print(error_msg)
            return error_msg

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the GAIACodeAgent on them, submits all answers,
    and displays the results.
    """
    # Determine HF Space Runtime URL and Repo URL
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent = GAIACodeAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    
    agent_code = f"https://huggingface.co./spaces/{space_id}/tree/main"
    print(f"Agent code URL: {agent_code}")

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

def query_single_agent(question):
    """Run agent on a single question for testing"""
    try:
        agent = GAIACodeAgent()
        response = agent(question)
        return response
    except Exception as e:
        return f"Error: {str(e)}"

# Build Gradio Interface
with gr.Blocks(title="GAIA Code Agent Evaluation") as demo:
    gr.Markdown("# GAIA Code Agent Evaluation")
    gr.Markdown(
        """
        This application helps you evaluate a code agent on the GAIA benchmark.
        
        ## Instructions:
        1. Log in to your Hugging Face account using the button below
        2. You can test the agent with a single question in the "Test Agent" tab
        3. Use the "Run Evaluation" tab to run the agent on all GAIA questions and submit answers
        """
    )
    
    with gr.Tab("Test Agent"):
        question_input = gr.Textbox(
            label="Enter a question", 
            placeholder="How many seconds would it take for a leopard at full speed to run through Pont des Arts?"
        )
        query_button = gr.Button("Get Answer")
        response_output = gr.Textbox(label="Agent Response", lines=10)
        query_button.click(query_single_agent, inputs=question_input, outputs=response_output)
    
    with gr.Tab("Run Evaluation"):
        gr.LoginButton()
        run_button = gr.Button("Run Evaluation & Submit All Answers")
        status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
        results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
        run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

# Start the app
if __name__ == "__main__":
    demo.launch()