Spaces:
Runtime error
Runtime error
emre
commited on
Commit
·
7ce3c76
1
Parent(s):
46ada82
Add application file
Browse files
app.py
CHANGED
@@ -1,11 +1,197 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
6 |
|
7 |
-
|
8 |
-
|
|
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import pandas as pd
|
5 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel
|
6 |
+
from huggingface_hub import login
|
7 |
|
8 |
+
# Constants
|
9 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", "") # Hugging Face token'ı buraya veya environment variable olarak ekle") # Hugging Face token
|
11 |
|
12 |
+
# Login if token is provided
|
13 |
+
if HF_TOKEN:
|
14 |
+
login(token=HF_TOKEN)
|
15 |
|
16 |
+
class GAIACodeAgent:
|
17 |
+
def __init__(self):
|
18 |
+
"""Initialize the advanced agent with tools and capabilities"""
|
19 |
+
model = InferenceClientModel()
|
20 |
+
self.agent = CodeAgent(
|
21 |
+
tools=[DuckDuckGoSearchTool()],
|
22 |
+
model=model
|
23 |
+
)
|
24 |
+
|
25 |
+
def __call__(self, question: str) -> str:
|
26 |
+
"""Process a question and return an answer"""
|
27 |
+
try:
|
28 |
+
print(f"Agent received question: {question[:50]}...")
|
29 |
+
# Improve the prompt to get better accuracy on exact match questions
|
30 |
+
enriched_prompt = (
|
31 |
+
f"Answer the following question accurately and concisely. "
|
32 |
+
f"Provide a straightforward answer without unnecessary elaboration. "
|
33 |
+
f"The answer will be evaluated for exact match accuracy.\n\n"
|
34 |
+
f"Question: {question}\n\n"
|
35 |
+
f"Answer: "
|
36 |
+
)
|
37 |
+
|
38 |
+
# Run the agent with the enriched prompt
|
39 |
+
response = self.agent.run(enriched_prompt)
|
40 |
+
|
41 |
+
# Clean up response to improve exact match chances
|
42 |
+
cleaned_response = response.strip()
|
43 |
+
print(f"Agent returning answer: {cleaned_response[:50]}...")
|
44 |
+
return cleaned_response
|
45 |
+
except Exception as e:
|
46 |
+
error_msg = f"Error: {str(e)}"
|
47 |
+
print(error_msg)
|
48 |
+
return error_msg
|
49 |
+
|
50 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
51 |
+
"""
|
52 |
+
Fetches all questions, runs the GAIACodeAgent on them, submits all answers,
|
53 |
+
and displays the results.
|
54 |
+
"""
|
55 |
+
# Determine HF Space Runtime URL and Repo URL
|
56 |
+
space_id = os.getenv("SPACE_ID")
|
57 |
+
|
58 |
+
if profile:
|
59 |
+
username = profile.username
|
60 |
+
print(f"User logged in: {username}")
|
61 |
+
else:
|
62 |
+
print("User not logged in.")
|
63 |
+
return "Please Login to Hugging Face with the button.", None
|
64 |
+
|
65 |
+
api_url = DEFAULT_API_URL
|
66 |
+
questions_url = f"{api_url}/questions"
|
67 |
+
submit_url = f"{api_url}/submit"
|
68 |
+
|
69 |
+
# 1. Instantiate Agent
|
70 |
+
try:
|
71 |
+
agent = GAIACodeAgent()
|
72 |
+
except Exception as e:
|
73 |
+
print(f"Error instantiating agent: {e}")
|
74 |
+
return f"Error initializing agent: {e}", None
|
75 |
+
|
76 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
77 |
+
print(f"Agent code URL: {agent_code}")
|
78 |
+
|
79 |
+
# 2. Fetch Questions
|
80 |
+
print(f"Fetching questions from: {questions_url}")
|
81 |
+
try:
|
82 |
+
response = requests.get(questions_url, timeout=15)
|
83 |
+
response.raise_for_status()
|
84 |
+
questions_data = response.json()
|
85 |
+
if not questions_data:
|
86 |
+
print("Fetched questions list is empty.")
|
87 |
+
return "Fetched questions list is empty or invalid format.", None
|
88 |
+
print(f"Fetched {len(questions_data)} questions.")
|
89 |
+
except requests.exceptions.RequestException as e:
|
90 |
+
print(f"Error fetching questions: {e}")
|
91 |
+
return f"Error fetching questions: {e}", None
|
92 |
+
except Exception as e:
|
93 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
94 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
95 |
+
|
96 |
+
# 3. Run Agent
|
97 |
+
results_log = []
|
98 |
+
answers_payload = []
|
99 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
100 |
+
for item in questions_data:
|
101 |
+
task_id = item.get("task_id")
|
102 |
+
question_text = item.get("question")
|
103 |
+
if not task_id or question_text is None:
|
104 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
105 |
+
continue
|
106 |
+
try:
|
107 |
+
submitted_answer = agent(question_text)
|
108 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
109 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
110 |
+
except Exception as e:
|
111 |
+
print(f"Error running agent on task {task_id}: {e}")
|
112 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
113 |
+
|
114 |
+
if not answers_payload:
|
115 |
+
print("Agent did not produce any answers to submit.")
|
116 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
117 |
+
|
118 |
+
# 4. Prepare Submission
|
119 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
120 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
121 |
+
print(status_update)
|
122 |
+
|
123 |
+
# 5. Submit
|
124 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
125 |
+
try:
|
126 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
127 |
+
response.raise_for_status()
|
128 |
+
result_data = response.json()
|
129 |
+
final_status = (
|
130 |
+
f"Submission Successful!\n"
|
131 |
+
f"User: {result_data.get('username')}\n"
|
132 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
133 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
134 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
135 |
+
)
|
136 |
+
print("Submission successful.")
|
137 |
+
results_df = pd.DataFrame(results_log)
|
138 |
+
return final_status, results_df
|
139 |
+
except requests.exceptions.HTTPError as e:
|
140 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
141 |
+
try:
|
142 |
+
error_json = e.response.json()
|
143 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
144 |
+
except requests.exceptions.JSONDecodeError:
|
145 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
146 |
+
status_message = f"Submission Failed: {error_detail}"
|
147 |
+
print(status_message)
|
148 |
+
results_df = pd.DataFrame(results_log)
|
149 |
+
return status_message, results_df
|
150 |
+
except Exception as e:
|
151 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
152 |
+
print(status_message)
|
153 |
+
results_df = pd.DataFrame(results_log)
|
154 |
+
return status_message, results_df
|
155 |
+
|
156 |
+
def query_single_agent(question):
|
157 |
+
"""Run agent on a single question for testing"""
|
158 |
+
try:
|
159 |
+
agent = GAIACodeAgent()
|
160 |
+
response = agent(question)
|
161 |
+
return response
|
162 |
+
except Exception as e:
|
163 |
+
return f"Error: {str(e)}"
|
164 |
+
|
165 |
+
# Build Gradio Interface
|
166 |
+
with gr.Blocks(title="GAIA Code Agent Evaluation") as demo:
|
167 |
+
gr.Markdown("# GAIA Code Agent Evaluation")
|
168 |
+
gr.Markdown(
|
169 |
+
"""
|
170 |
+
This application helps you evaluate a code agent on the GAIA benchmark.
|
171 |
+
|
172 |
+
## Instructions:
|
173 |
+
1. Log in to your Hugging Face account using the button below
|
174 |
+
2. You can test the agent with a single question in the "Test Agent" tab
|
175 |
+
3. Use the "Run Evaluation" tab to run the agent on all GAIA questions and submit answers
|
176 |
+
"""
|
177 |
+
)
|
178 |
+
|
179 |
+
with gr.Tab("Test Agent"):
|
180 |
+
question_input = gr.Textbox(
|
181 |
+
label="Enter a question",
|
182 |
+
placeholder="How many seconds would it take for a leopard at full speed to run through Pont des Arts?"
|
183 |
+
)
|
184 |
+
query_button = gr.Button("Get Answer")
|
185 |
+
response_output = gr.Textbox(label="Agent Response", lines=10)
|
186 |
+
query_button.click(query_single_agent, inputs=question_input, outputs=response_output)
|
187 |
+
|
188 |
+
with gr.Tab("Run Evaluation"):
|
189 |
+
gr.LoginButton()
|
190 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
191 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
192 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
193 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
194 |
+
|
195 |
+
# Start the app
|
196 |
+
if __name__ == "__main__":
|
197 |
+
demo.launch()
|