dezzman's picture
Update app.py
dcd37d2 verified
raw
history blame
11.6 kB
import gradio as gr
import numpy as np
import torch
from diffusers.utils import load_image, make_image_grid
from diffusers import (
StableDiffusionPipeline,
StableDiffusionControlNetPipeline,
ControlNetModel
)
from peft import PeftModel, LoraConfig
from controlnet_aux import HEDdetector
from PIL import Image
import cv2 as cv
import os
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
IP_ADAPTER = 'h94/IP-Adapter'
IP_ADAPTER_WEIGHT_NAME = "ip-adapter-plus_sd15.bin"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id_default = "CompVis/stable-diffusion-v1-4"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
hed = None
dict_controlnet = {
"edge_detection": "lllyasviel/sd-controlnet-canny",
# "pose_estimation": "lllyasviel/sd-controlnet-openpose",
# "depth_map": "lllyasviel/sd-controlnet-depth",
"scribble": "lllyasviel/sd-controlnet-scribble",
# "MLSD": "lllyasviel/sd-controlnet-mlsd"
}
controlnet = ControlNetModel.from_pretrained(
dict_controlnet["edge_detection"],
cache_dir="./models_cache",
torch_dtype=torch_dtype,
)
def get_lora_sd_pipeline(
ckpt_dir='./lora_logos',
base_model_name_or_path=None,
dtype=torch.float16,
adapter_name="default",
controlnet=None
):
unet_sub_dir = os.path.join(ckpt_dir, "unet")
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
config = LoraConfig.from_pretrained(text_encoder_sub_dir)
base_model_name_or_path = config.base_model_name_or_path
if base_model_name_or_path is None:
raise ValueError("Please specify the base model name or path")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
base_model_name_or_path,
torch_dtype=dtype,
controlnet=controlnet,
)
before_params = pipe.unet.parameters()
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
pipe.unet.set_adapter(adapter_name)
after_params = pipe.unet.parameters()
print("Parameters changed:", any(torch.any(b != a) for b, a in zip(before_params, after_params)))
if os.path.exists(text_encoder_sub_dir):
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
if dtype in (torch.float16, torch.bfloat16):
pipe.unet.half()
pipe.text_encoder.half()
return pipe
def process_prompt(prompt, tokenizer, text_encoder, max_length=77):
tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
chunks = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
with torch.no_grad():
embeds = [text_encoder(chunk.to(text_encoder.device))[0] for chunk in chunks]
return torch.cat(embeds, dim=1)
def align_embeddings(prompt_embeds, negative_prompt_embeds):
max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
def map_edge_detection(image_path: str) -> Image:
source_img = load_image(image_path).convert('RGB')
edges = cv.Canny(np.array(source_img), 80, 160)
edges = np.repeat(edges[:, :, None], 3, axis=2)
final_image = Image.fromarray(edges)
return final_image
def map_scribble(image_path: str) -> Image:
global hed
if not hed:
hed = HEDdetector.from_pretrained('lllyasviel/Annotators')
image = load_image(image_path).convert('RGB')
scribble_image = hed(image)
image_np = np.array(scribble_image)
image_np = cv.medianBlur(image_np, 3)
image = cv.convertScaleAbs(image_np, alpha=1.5, beta=0)
final_image = Image.fromarray(image)
return final_image
pipe = get_lora_sd_pipeline(
ckpt_dir='./lora_logos',
base_model_name_or_path=model_id_default,
dtype=torch_dtype,
controlnet=controlnet
).to(device)
def infer(
prompt,
negative_prompt,
width=512,
height=512,
num_inference_steps=20,
model_id='CompVis/stable-diffusion-v1-4',
seed=42,
guidance_scale=7.0,
lora_scale=0.5,
cn_enable=False,
cn_strength=0.0,
cn_mode='edge_detection',
cn_image=None,
ip_enable=False,
ip_scale=0.5,
ip_image=None,
progress=gr.Progress(track_tqdm=True)
):
generator = torch.Generator(device).manual_seed(seed)
global pipe
global controlnet
controlnet_changed = False
if cn_enable:
if dict_controlnet[cn_mode] != pipe.controlnet._name_or_path:
controlnet = ControlNetModel.from_pretrained(
dict_controlnet[cn_mode],
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
controlnet_changed = True
else:
cn_strength = 0.0 # отключаем контролнет принудительно
if model_id != pipe._name_or_path:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id,
torch_dtype=torch_dtype,
controlnet=controlnet,
controlnet_conditioning_scale=cn_strength,
).to(device)
elif (model_id == pipe._name_or_path) and controlnet_changed:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id,
torch_dtype=torch_dtype,
controlnet=controlnet,
controlnet_conditioning_scale=cn_strength,
).to(device)
print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
print(f"LoRA scale applied: {lora_scale}")
pipe.fuse_lora(lora_scale=lora_scale)
elif (model_id == pipe._name_or_path) and not controlnet_changed:
print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
print(f"LoRA scale applied: {lora_scale}")
pipe.fuse_lora(lora_scale=lora_scale)
prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
params = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'guidance_scale': guidance_scale,
'num_inference_steps': num_inference_steps,
'width': width,
'height': height,
'generator': generator,
}
if cn_enable:
params['controlnet_conditioning_scale'] = cn_strength
if cn_mode == 'edge_detection':
control_image = map_edge_detection(cn_image)
print(type(control_image))
elif cn_mode == 'scribble':
control_image = map_scribble(cn_image)
params['control_image'] = control_image
if ip_enable:
pipe.load_ip_adapter(
IP_ADAPTER,
subfolder="models",
weight_name=IP_ADAPTER_WEIGHT_NAME,
)
params['ip_adapter_image'] = load_image(ip_image).convert('RGB')
pipe.ip_scale(0.6)
return pipe(**params).images[0]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # DEMO Text-to-Image")
with gr.Row():
model_id = gr.Textbox(
label="Model ID",
max_lines=1,
placeholder="Enter model id like 'CompVis/stable-diffusion-v1-4'",
value=model_id_default
)
prompt = gr.Textbox(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
seed = gr.Number(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0,
)
with gr.Row():
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20,
)
# Секция Control Net
cn_enable = gr.Checkbox(label="Enable ControlNet")
with gr.Column(visible=False) as cn_options:
with gr.Row():
cn_strength = gr.Slider(0, 2, value=0.8, step=0.1, label="Control strength", interactive=True)
cn_mode = gr.Dropdown(
choices=["edge_detection", "scribble"],
value="edge_detection",
label="Work regime",
interactive=True,
)
cn_image = gr.Image(type="filepath", label="Control image")
cn_enable.change(
lambda x: gr.update(visible=x),
inputs=cn_enable,
outputs=cn_options
)
# Секция IP-Adapter
ip_enable = gr.Checkbox(label="Enable IP-Adapter")
with gr.Column(visible=False) as ip_options:
ip_scale = gr.Slider(0, 1, value=0.5, step=0.1, label="IP-adapter scale", interactive=True)
ip_image = gr.Image(type="filepath", label="IP-adapter image", interactive=True)
ip_enable.change(
lambda x: gr.update(visible=x),
inputs=ip_enable,
outputs=ip_options
)
with gr.Accordion("Optional Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
run_button = gr.Button("Run", scale=1, variant="primary")
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
width,
height,
num_inference_steps,
model_id,
seed,
guidance_scale,
lora_scale,
cn_enable,
cn_strength,
cn_mode,
cn_image,
ip_enable,
ip_scale,
ip_image
],
outputs=[result],
)
if __name__ == "__main__":
demo.launch()