Spaces:
Build error
Build error
File size: 21,522 Bytes
a952d46 e9a1c0f a952d46 e9a1c0f efc88b8 9ebc452 efc88b8 a952d46 62a6171 93f7649 62a6171 93f7649 9ebc452 93f7649 62a6171 93f7649 45b15ae e9a1c0f efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 a952d46 efc88b8 9ebc452 efc88b8 a952d46 9ebc452 a952d46 9ebc452 a952d46 efc88b8 9ebc452 e9a1c0f 9ebc452 efc88b8 e9a1c0f 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 e9a1c0f 9ebc452 e9a1c0f efc88b8 a952d46 efc88b8 9ebc452 a952d46 efc88b8 a952d46 9ebc452 a952d46 efc88b8 a952d46 9ebc452 a952d46 efc88b8 a952d46 9ebc452 a952d46 9ebc452 a952d46 9ebc452 45b15ae 9ebc452 efc88b8 45b15ae efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 9ebc452 efc88b8 a952d46 efc88b8 a952d46 9ebc452 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
import os
import tempfile
from pathlib import Path
# Set memory optimization environment variables
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
os.environ['ANEMOI_INFERENCE_NUM_CHUNKS'] = '16'
import gradio as gr
import datetime
import numpy as np
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.tri as tri
from anemoi.inference.runners.simple import SimpleRunner
from ecmwf.opendata import Client as OpendataClient
import earthkit.data as ekd
import earthkit.regrid as ekr
import matplotlib.animation as animation
from functools import lru_cache
import hashlib
import pickle
import json
from typing import List, Dict, Any
import logging
import xarray as xr
import pandas as pd
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Define parameters (updating to match notebook.py)
PARAM_SFC = ["10u", "10v", "2d", "2t", "msl", "skt", "sp", "tcw", "lsm", "z", "slor", "sdor"]
PARAM_SOIL = ["vsw", "sot"]
PARAM_PL = ["gh", "t", "u", "v", "w", "q"]
LEVELS = [1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 50]
SOIL_LEVELS = [1, 2]
DEFAULT_DATE = OpendataClient().latest()
# First organize variables into categories
VARIABLE_GROUPS = {
"Surface Variables": {
"10u": "10m U Wind Component",
"10v": "10m V Wind Component",
"2d": "2m Dewpoint Temperature",
"2t": "2m Temperature",
"msl": "Mean Sea Level Pressure",
"skt": "Skin Temperature",
"sp": "Surface Pressure",
"tcw": "Total Column Water",
"lsm": "Land-Sea Mask",
"z": "Surface Geopotential",
"slor": "Slope of Sub-gridscale Orography",
"sdor": "Standard Deviation of Orography",
},
"Soil Variables": {
"stl1": "Soil Temperature Level 1",
"stl2": "Soil Temperature Level 2",
"swvl1": "Soil Water Volume Level 1",
"swvl2": "Soil Water Volume Level 2",
},
"Pressure Level Variables": {} # Will fill this dynamically
}
# Add pressure level variables dynamically
for var in ["t", "u", "v", "w", "q", "z"]:
var_name = {
"t": "Temperature",
"u": "U Wind Component",
"v": "V Wind Component",
"w": "Vertical Velocity",
"q": "Specific Humidity",
"z": "Geopotential"
}[var]
for level in LEVELS:
var_id = f"{var}_{level}"
VARIABLE_GROUPS["Pressure Level Variables"][var_id] = f"{var_name} at {level}hPa"
# Load the model once at startup
MODEL = SimpleRunner("aifs-single-mse-1.0.ckpt", device="cuda") # Default to CUDA
# Create and set custom temp directory
TEMP_DIR = Path("./gradio_temp")
TEMP_DIR.mkdir(exist_ok=True)
os.environ['GRADIO_TEMP_DIR'] = str(TEMP_DIR)
# Add these cache-related functions after the MODEL initialization
def get_cache_key(date: datetime.datetime, params: List[str], levellist: List[int]) -> str:
"""Create a unique cache key based on the request parameters"""
key_parts = [
date.isoformat(),
",".join(sorted(params)),
",".join(str(x) for x in sorted(levellist)) if levellist else "no_levels"
]
key_string = "_".join(key_parts)
cache_key = hashlib.md5(key_string.encode()).hexdigest()
logger.info(f"Generated cache key: {cache_key} for {key_string}")
return cache_key
def get_cache_path(cache_key: str) -> Path:
"""Get the path to the cache file"""
return TEMP_DIR / "data_cache" / f"{cache_key}.pkl"
def save_to_cache(cache_key: str, data: Dict[str, Any]) -> None:
"""Save data to disk cache"""
cache_file = get_cache_path(cache_key)
try:
with open(cache_file, 'wb') as f:
pickle.dump(data, f)
logger.info(f"Successfully saved data to cache: {cache_file}")
except Exception as e:
logger.error(f"Failed to save to cache: {e}")
def load_from_cache(cache_key: str) -> Dict[str, Any]:
"""Load data from disk cache"""
cache_file = get_cache_path(cache_key)
if cache_file.exists():
try:
with open(cache_file, 'rb') as f:
data = pickle.load(f)
logger.info(f"Successfully loaded data from cache: {cache_file}")
return data
except Exception as e:
logger.error(f"Failed to load from cache: {e}")
cache_file.unlink(missing_ok=True)
logger.info(f"No cache file found: {cache_file}")
return None
# Modify the get_open_data function to use caching
@lru_cache(maxsize=32)
def get_cached_data(date_str: str, param_tuple: tuple, levelist_tuple: tuple) -> Dict[str, Any]:
"""Memory cache wrapper for get_open_data"""
return get_open_data_impl(
datetime.datetime.fromisoformat(date_str),
list(param_tuple),
list(levelist_tuple) if levelist_tuple else []
)
def get_open_data(param: List[str], levelist: List[int] = None) -> Dict[str, Any]:
"""Main function to get data with caching"""
if levelist is None:
levelist = []
# Try disk cache first (more persistent than memory cache)
cache_key = get_cache_key(DEFAULT_DATE, param, levelist)
logger.info(f"Checking cache for key: {cache_key}")
cached_data = load_from_cache(cache_key)
if cached_data is not None:
logger.info(f"Cache hit for {cache_key}")
return cached_data
# If not in cache, download and process the data
logger.info(f"Cache miss for {cache_key}, downloading fresh data")
fields = get_open_data_impl(DEFAULT_DATE, param, levelist)
# Save to disk cache
save_to_cache(cache_key, fields)
return fields
def get_open_data_impl(date: datetime.datetime, param: List[str], levelist: List[int]) -> Dict[str, Any]:
"""Implementation of data download and processing"""
fields = {}
myiterable = [date - datetime.timedelta(hours=6), date]
logger.info(f"Downloading data for dates: {myiterable}")
for current_date in myiterable:
logger.info(f"Fetching data for {current_date}")
data = ekd.from_source("ecmwf-open-data", date=current_date, param=param, levelist=levelist)
for f in data:
assert f.to_numpy().shape == (721, 1440)
values = np.roll(f.to_numpy(), -f.shape[1] // 2, axis=1)
values = ekr.interpolate(values, {"grid": (0.25, 0.25)}, {"grid": "N320"})
name = f"{f.metadata('param')}_{f.metadata('levelist')}" if levelist else f.metadata("param")
if name not in fields:
fields[name] = []
fields[name].append(values)
# Create a single matrix for each parameter
for param, values in fields.items():
fields[param] = np.stack(values)
return fields
def plot_forecast(state, selected_variable):
logger.info(f"Plotting forecast for {selected_variable} at time {state['date']}")
# Setup the figure and axis
fig = plt.figure(figsize=(15, 8))
ax = plt.axes(projection=ccrs.PlateCarree(central_longitude=0))
# Get the coordinates
latitudes, longitudes = state["latitudes"], state["longitudes"]
fixed_lons = np.where(longitudes > 180, longitudes - 360, longitudes)
triangulation = tri.Triangulation(fixed_lons, latitudes)
# Get the values
values = state["fields"][selected_variable]
logger.info(f"Value range: min={np.min(values):.2f}, max={np.max(values):.2f}")
# Set map features
ax.set_global()
ax.set_extent([-180, 180, -85, 85], crs=ccrs.PlateCarree())
ax.coastlines(resolution='50m')
ax.add_feature(cfeature.BORDERS, linestyle=":", alpha=0.5)
ax.gridlines(draw_labels=True)
# Create contour plot
contour = ax.tricontourf(triangulation, values,
levels=20, transform=ccrs.PlateCarree(),
cmap='RdBu_r')
# Add colorbar
plt.colorbar(contour, ax=ax, orientation='horizontal', pad=0.05)
# Format the date string
forecast_time = state["date"]
if isinstance(forecast_time, str):
forecast_time = datetime.datetime.fromisoformat(forecast_time)
time_str = forecast_time.strftime("%Y-%m-%d %H:%M UTC")
# Get variable description
var_desc = None
for group in VARIABLE_GROUPS.values():
if selected_variable in group:
var_desc = group[selected_variable]
break
var_name = var_desc if var_desc else selected_variable
ax.set_title(f"{var_name} - {time_str}")
# Save as PNG
temp_file = str(TEMP_DIR / f"forecast_{datetime.datetime.now().timestamp()}.png")
plt.savefig(temp_file, bbox_inches='tight', dpi=100)
plt.close()
return temp_file
def run_forecast(date: datetime.datetime, lead_time: int, device: str) -> Dict[str, Any]:
# Get all required fields
fields = {}
logger.info(f"Starting forecast for lead_time: {lead_time} hours")
# Get surface fields
logger.info("Getting surface fields...")
fields.update(get_open_data(param=PARAM_SFC))
# Get soil fields and rename them
logger.info("Getting soil fields...")
soil = get_open_data(param=PARAM_SOIL, levelist=SOIL_LEVELS)
mapping = {
'sot_1': 'stl1', 'sot_2': 'stl2',
'vsw_1': 'swvl1', 'vsw_2': 'swvl2'
}
for k, v in soil.items():
fields[mapping[k]] = v
# Get pressure level fields
logger.info("Getting pressure level fields...")
fields.update(get_open_data(param=PARAM_PL, levelist=LEVELS))
# Convert geopotential height to geopotential
for level in LEVELS:
gh = fields.pop(f"gh_{level}")
fields[f"z_{level}"] = gh * 9.80665
input_state = dict(date=date, fields=fields)
# Use the global model instance
global MODEL
if device != MODEL.device:
MODEL = SimpleRunner("aifs-single-mse-1.0.ckpt", device=device)
# Run the model and get the final state
final_state = None
for state in MODEL.run(input_state=input_state, lead_time=lead_time):
logger.info(f"\nπ date={state['date']} latitudes={state['latitudes'].shape} "
f"longitudes={state['longitudes'].shape} fields={len(state['fields'])}")
# Log a few example variables to show we have all fields
for var in ['2t', 'msl', 't_1000', 'z_850']:
if var in state['fields']:
values = state['fields'][var]
logger.info(f" {var:<6} shape={values.shape} "
f"min={np.min(values):.6f} "
f"max={np.max(values):.6f}")
final_state = state
logger.info(f"Final state contains {len(final_state['fields'])} variables")
return final_state
def get_available_variables(state):
"""Get available variables from the state and organize them into groups"""
available_vars = set(state['fields'].keys())
# Create dropdown choices only for available variables
choices = []
for group_name, variables in VARIABLE_GROUPS.items():
group_vars = [(f"{desc} ({var_id})", var_id)
for var_id, desc in variables.items()
if var_id in available_vars]
if group_vars: # Only add group if it has available variables
choices.append((f"ββ {group_name} ββ", None))
choices.extend(group_vars)
return choices
def save_forecast_data(state, format='json'):
"""Save forecast data in specified format"""
if state is None:
raise ValueError("No forecast data available. Please run a forecast first.")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
forecast_time = state['date'].strftime("%Y%m%d_%H") if isinstance(state['date'], datetime.datetime) else state['date']
# Use forecasts directory for all outputs
output_dir = TEMP_DIR / "forecasts"
if format == 'json':
# Create a JSON-serializable dictionary
data = {
'metadata': {
'forecast_date': forecast_time,
'export_date': datetime.datetime.now().isoformat(),
'total_points': len(state['latitudes']),
'total_variables': len(state['fields'])
},
'coordinates': {
'latitudes': state['latitudes'].tolist(),
'longitudes': state['longitudes'].tolist()
},
'fields': {
var_name: {
'values': values.tolist(),
'statistics': {
'min': float(np.min(values)),
'max': float(np.max(values)),
'mean': float(np.mean(values)),
'std': float(np.std(values))
}
}
for var_name, values in state['fields'].items()
}
}
output_file = output_dir / f"forecast_{forecast_time}_{timestamp}.json"
with open(output_file, 'w') as f:
json.dump(data, f, indent=2)
return str(output_file)
elif format == 'netcdf':
# Create an xarray Dataset
data_vars = {}
coords = {
'point': np.arange(len(state['latitudes'])),
'latitude': ('point', state['latitudes']),
'longitude': ('point', state['longitudes']),
}
# Add each field as a variable
for var_name, values in state['fields'].items():
data_vars[var_name] = (['point'], values)
# Create the dataset
ds = xr.Dataset(
data_vars=data_vars,
coords=coords,
attrs={
'forecast_date': forecast_time,
'export_date': datetime.datetime.now().isoformat(),
'description': 'AIFS Weather Forecast Data'
}
)
output_file = output_dir / f"forecast_{forecast_time}_{timestamp}.nc"
ds.to_netcdf(output_file)
return str(output_file)
elif format == 'csv':
# Create a DataFrame with lat/lon and all variables
df = pd.DataFrame({
'latitude': state['latitudes'],
'longitude': state['longitudes']
})
# Add each field as a column
for var_name, values in state['fields'].items():
df[var_name] = values
output_file = output_dir / f"forecast_{forecast_time}_{timestamp}.csv"
df.to_csv(output_file, index=False)
return str(output_file)
else:
raise ValueError(f"Unsupported format: {format}")
# Create dropdown choices with groups
DROPDOWN_CHOICES = []
for group_name, variables in VARIABLE_GROUPS.items():
# Add group separator
DROPDOWN_CHOICES.append((f"ββ {group_name} ββ", None))
# Add variables in this group
for var_id, desc in sorted(variables.items()):
DROPDOWN_CHOICES.append((f"{desc} ({var_id})", var_id))
def update_interface():
with gr.Blocks(css="""
.centered-header {
text-align: center;
margin-bottom: 20px;
}
.subtitle {
font-size: 1.2em;
line-height: 1.5;
margin: 20px 0;
}
.footer {
text-align: center;
padding: 20px;
margin-top: 20px;
border-top: 1px solid #eee;
}
""") as demo:
forecast_state = gr.State(None)
# Header section
gr.Markdown(f"""
# AIFS Weather Forecast
<div class="subtitle">
Interactive visualization of ECMWF AIFS weather forecasts.<br>
Starting from the latest available data ({DEFAULT_DATE.strftime('%Y-%m-%d %H:%M UTC')}),<br>
select how many hours ahead you want to forecast and which meteorological variable to visualize.
</div>
""")
with gr.Row():
with gr.Column(scale=1):
lead_time = gr.Slider(
minimum=6,
maximum=48,
step=6,
value=12,
label="Forecast Hours Ahead"
)
# Start with the original DROPDOWN_CHOICES
variable = gr.Dropdown(
choices=DROPDOWN_CHOICES, # Use original choices at startup
value="2t",
label="Select Variable to Plot"
)
with gr.Row():
clear_btn = gr.Button("Clear")
run_btn = gr.Button("Run Forecast", variant="primary")
download_nc = gr.Button("Download Forecast (NetCDF)")
download_output = gr.File(label="Download Output")
with gr.Column(scale=2):
forecast_output = gr.Image()
def run_and_store(lead_time):
"""Run forecast and store state"""
forecast_state = run_forecast(DEFAULT_DATE, lead_time, "cuda")
plot = plot_forecast(forecast_state, "2t") # Default to 2t
return forecast_state, plot
def update_plot_from_state(forecast_state, variable):
"""Update plot using stored state"""
if forecast_state is None or variable is None:
return None
try:
return plot_forecast(forecast_state, variable)
except KeyError as e:
logger.error(f"Variable {variable} not found in state: {e}")
return None
def clear():
"""Clear everything"""
return [None, None, 12, "2t"]
def save_netcdf(forecast_state):
"""Save forecast data as NetCDF"""
if forecast_state is None:
raise ValueError("No forecast data available. Please run a forecast first.")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
forecast_time = forecast_state['date'].strftime("%Y%m%d_%H") if isinstance(forecast_state['date'], datetime.datetime) else forecast_state['date']
# Create an xarray Dataset
data_vars = {}
coords = {
'point': np.arange(len(forecast_state['latitudes'])),
'latitude': ('point', forecast_state['latitudes']),
'longitude': ('point', forecast_state['longitudes']),
}
# Add each field as a variable
for var_name, values in forecast_state['fields'].items():
data_vars[var_name] = (['point'], values)
# Create the dataset
ds = xr.Dataset(
data_vars=data_vars,
coords=coords,
attrs={
'forecast_date': forecast_time,
'export_date': datetime.datetime.now().isoformat(),
'description': 'AIFS Weather Forecast Data'
}
)
output_file = TEMP_DIR / "forecasts" / f"forecast_{forecast_time}_{timestamp}.nc"
ds.to_netcdf(output_file)
return str(output_file)
# Connect the components
run_btn.click(
fn=run_and_store,
inputs=[lead_time],
outputs=[forecast_state, forecast_output]
)
variable.change(
fn=update_plot_from_state,
inputs=[forecast_state, variable],
outputs=forecast_output
)
clear_btn.click(
fn=clear,
inputs=[],
outputs=[forecast_state, forecast_output, lead_time, variable]
)
download_nc.click(
fn=save_netcdf,
inputs=[forecast_state],
outputs=[download_output]
)
return demo
# Create and launch the interface
demo = update_interface()
demo.launch()
def setup_directories():
"""Create necessary directories with .keep files"""
# Define all required directories
directories = {
TEMP_DIR / "data_cache": "Cache directory for downloaded weather data",
TEMP_DIR / "forecasts": "Directory for forecast outputs (plots and data files)",
}
# Create directories and .keep files
for directory, description in directories.items():
directory.mkdir(parents=True, exist_ok=True)
keep_file = directory / ".keep"
if not keep_file.exists():
keep_file.write_text(f"# {description}\n# This file ensures the directory is tracked in git\n")
logger.info(f"Created directory and .keep file: {directory}")
# Call it during initialization
setup_directories()
def cleanup_old_files():
"""Remove old temporary and cache files"""
current_time = datetime.datetime.now().timestamp()
# Clean up forecast files (1 hour old)
forecast_dir = TEMP_DIR / "forecasts"
for file in forecast_dir.glob("*.*"):
if file.name == ".keep":
continue
if current_time - file.stat().st_mtime > 3600:
logger.info(f"Removing old forecast file: {file}")
file.unlink(missing_ok=True)
# Clean up cache files (24 hours old)
cache_dir = TEMP_DIR / "data_cache"
for file in cache_dir.glob("*.pkl"):
if file.name == ".keep":
continue
if current_time - file.stat().st_mtime > 86400:
logger.info(f"Removing old cache file: {file}")
file.unlink(missing_ok=True)
|