Spaces:
Build error
Build error
labels
Browse files
app.py
CHANGED
@@ -23,6 +23,43 @@ LEVELS = [1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 50]
|
|
23 |
SOIL_LEVELS = [1, 2]
|
24 |
DEFAULT_DATE = OpendataClient().latest()
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def get_open_data(param, levelist=[]):
|
27 |
fields = {}
|
28 |
# Get the data for the current date and the previous date
|
@@ -74,36 +111,59 @@ def run_forecast(date, lead_time, device):
|
|
74 |
results.append(state)
|
75 |
return results[-1]
|
76 |
|
77 |
-
def plot_forecast(state):
|
78 |
latitudes, longitudes = state["latitudes"], state["longitudes"]
|
79 |
-
values = state["fields"][
|
80 |
fig, ax = plt.subplots(figsize=(11, 6), subplot_kw={"projection": ccrs.PlateCarree()})
|
81 |
ax.coastlines()
|
82 |
ax.add_feature(cfeature.BORDERS, linestyle=":")
|
83 |
triangulation = tri.Triangulation(longitudes, latitudes)
|
84 |
contour = ax.tricontourf(triangulation, values, levels=20, transform=ccrs.PlateCarree(), cmap="RdBu")
|
85 |
-
plt.title(f"
|
86 |
plt.colorbar(contour)
|
87 |
return fig
|
88 |
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
try:
|
91 |
date = datetime.datetime.strptime(date_str, "%Y-%m-%d")
|
92 |
except ValueError:
|
93 |
raise gr.Error("Please enter a valid date in YYYY-MM-DD format")
|
94 |
state = run_forecast(date, lead_time, device)
|
95 |
-
return plot_forecast(state)
|
96 |
|
97 |
demo = gr.Interface(
|
98 |
fn=gradio_interface,
|
99 |
inputs=[
|
100 |
gr.Textbox(value=DEFAULT_DATE.strftime("%Y-%m-%d"), label="Forecast Date (YYYY-MM-DD)"),
|
101 |
gr.Slider(minimum=6, maximum=48, step=6, value=12, label="Lead Time (Hours)"),
|
102 |
-
gr.Radio(choices=["cuda", "cpu"], value="cuda", label="Compute Device")
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
],
|
104 |
outputs=gr.Plot(),
|
105 |
title="AIFS Weather Forecast",
|
106 |
-
description="
|
107 |
)
|
108 |
|
109 |
demo.launch()
|
|
|
23 |
SOIL_LEVELS = [1, 2]
|
24 |
DEFAULT_DATE = OpendataClient().latest()
|
25 |
|
26 |
+
# First define the variable descriptions
|
27 |
+
VARIABLE_DESCRIPTIONS = {
|
28 |
+
# Surface variables (10m)
|
29 |
+
"10u": "10m U Wind Component",
|
30 |
+
"10v": "10m V Wind Component",
|
31 |
+
"2d": "2m Dewpoint Temperature",
|
32 |
+
"2t": "2m Temperature",
|
33 |
+
"msl": "Mean Sea Level Pressure",
|
34 |
+
"skt": "Skin Temperature",
|
35 |
+
"sp": "Surface Pressure",
|
36 |
+
"tcw": "Total Column Water",
|
37 |
+
"lsm": "Land-Sea Mask",
|
38 |
+
"z": "Surface Geopotential",
|
39 |
+
"slor": "Slope of Sub-gridscale Orography",
|
40 |
+
"sdor": "Standard Deviation of Orography",
|
41 |
+
|
42 |
+
# Soil variables
|
43 |
+
"stl1": "Soil Temperature Level 1",
|
44 |
+
"stl2": "Soil Temperature Level 2",
|
45 |
+
"swvl1": "Soil Water Volume Level 1",
|
46 |
+
"swvl2": "Soil Water Volume Level 2",
|
47 |
+
}
|
48 |
+
|
49 |
+
# Add pressure level variable descriptions dynamically
|
50 |
+
for var in ["t", "u", "v", "w", "q", "z"]:
|
51 |
+
var_name = {
|
52 |
+
"t": "Temperature",
|
53 |
+
"u": "U Wind Component",
|
54 |
+
"v": "V Wind Component",
|
55 |
+
"w": "Vertical Velocity",
|
56 |
+
"q": "Specific Humidity",
|
57 |
+
"z": "Geopotential"
|
58 |
+
}[var]
|
59 |
+
|
60 |
+
for level in LEVELS:
|
61 |
+
VARIABLE_DESCRIPTIONS[f"{var}_{level}"] = f"{var_name} at {level}hPa"
|
62 |
+
|
63 |
def get_open_data(param, levelist=[]):
|
64 |
fields = {}
|
65 |
# Get the data for the current date and the previous date
|
|
|
111 |
results.append(state)
|
112 |
return results[-1]
|
113 |
|
114 |
+
def plot_forecast(state, selected_variable):
|
115 |
latitudes, longitudes = state["latitudes"], state["longitudes"]
|
116 |
+
values = state["fields"][selected_variable]
|
117 |
fig, ax = plt.subplots(figsize=(11, 6), subplot_kw={"projection": ccrs.PlateCarree()})
|
118 |
ax.coastlines()
|
119 |
ax.add_feature(cfeature.BORDERS, linestyle=":")
|
120 |
triangulation = tri.Triangulation(longitudes, latitudes)
|
121 |
contour = ax.tricontourf(triangulation, values, levels=20, transform=ccrs.PlateCarree(), cmap="RdBu")
|
122 |
+
plt.title(f"{selected_variable} at {state['date']}")
|
123 |
plt.colorbar(contour)
|
124 |
return fig
|
125 |
|
126 |
+
# Then create the available variables list
|
127 |
+
AVAILABLE_VARIABLES = (
|
128 |
+
# Surface variables
|
129 |
+
["10u", "10v", "2d", "2t", "msl", "skt", "sp", "tcw", "lsm", "z", "slor", "sdor"] +
|
130 |
+
# Soil variables
|
131 |
+
["stl1", "stl2", "swvl1", "swvl2"] +
|
132 |
+
# Pressure level variables (adding level suffix)
|
133 |
+
[f"{var}_{level}" for var in ["t", "u", "v", "w", "q", "z"]
|
134 |
+
for level in LEVELS]
|
135 |
+
)
|
136 |
+
|
137 |
+
# Finally create the dropdown choices
|
138 |
+
DROPDOWN_CHOICES = [
|
139 |
+
(f"{VARIABLE_DESCRIPTIONS[var_id]} ({var_id})", var_id)
|
140 |
+
for var_id in sorted(AVAILABLE_VARIABLES)
|
141 |
+
]
|
142 |
+
|
143 |
+
def gradio_interface(date_str, lead_time, device, selected_variable):
|
144 |
try:
|
145 |
date = datetime.datetime.strptime(date_str, "%Y-%m-%d")
|
146 |
except ValueError:
|
147 |
raise gr.Error("Please enter a valid date in YYYY-MM-DD format")
|
148 |
state = run_forecast(date, lead_time, device)
|
149 |
+
return plot_forecast(state, selected_variable)
|
150 |
|
151 |
demo = gr.Interface(
|
152 |
fn=gradio_interface,
|
153 |
inputs=[
|
154 |
gr.Textbox(value=DEFAULT_DATE.strftime("%Y-%m-%d"), label="Forecast Date (YYYY-MM-DD)"),
|
155 |
gr.Slider(minimum=6, maximum=48, step=6, value=12, label="Lead Time (Hours)"),
|
156 |
+
gr.Radio(choices=["cuda", "cpu"], value="cuda", label="Compute Device"),
|
157 |
+
gr.Dropdown(
|
158 |
+
choices=DROPDOWN_CHOICES,
|
159 |
+
value="t_850", # This should be the variable ID
|
160 |
+
label="Select Variable to Plot",
|
161 |
+
info="Choose a meteorological variable to visualize"
|
162 |
+
)
|
163 |
],
|
164 |
outputs=gr.Plot(),
|
165 |
title="AIFS Weather Forecast",
|
166 |
+
description="Interactive visualization of ECMWF AIFS weather forecasts. Select a date, forecast lead time, and meteorological variable to plot."
|
167 |
)
|
168 |
|
169 |
demo.launch()
|