Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
import os | |
import google.generativeai as genai | |
from langchain.vectorstores import FAISS | |
from langchain.prompts import PromptTemplate | |
from langchain.chains.question_answering import load_qa_chain | |
from dotenv import load_dotenv | |
load_dotenv() | |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) | |
def get_pdf_text(pdf_docs): | |
text = "" | |
pdf_reader = PdfReader(pdf_docs) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vector_store(text_chunks): | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
vector_store = FAISS.from_texts(text_chunks, embeddings) | |
vector_store.save_local("faiss_index") | |
def get_conversational_chain(): | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
prompt_template = """ | |
Answer the question as detailed as possible from the provided context and make sure to provide all the details. | |
If the answer is not present in the provided context, just say "Answer is not available in context". Do not provide | |
the wrong answer. | |
Context:\n{context}?\n | |
Question:\n{question}\n | |
Answer: | |
""" | |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
return chain | |
def user_input(user_question): | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) | |
docs = new_db.similarity_search(user_question) | |
chain = get_conversational_chain() | |
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True) | |
st.write("Reply:", response["output_text"]) | |
def main(): | |
st.set_page_config(page_title="Chat with PDF") | |
st.header("Chat with PDF using Gemini AI") | |
user_question = st.text_input("Ask a question about the PDF file") | |
if user_question: | |
user_input(user_question) | |
with st.sidebar: | |
st.title("Menu") | |
pdf_docs = st.file_uploader("Upload your PDF file here") | |
if st.button("Submit & Process"): | |
if pdf_docs: | |
with st.spinner("Processing..."): | |
raw_text = get_pdf_text(pdf_docs) | |
text_chunks = get_text_chunks(raw_text) | |
get_vector_store(text_chunks) | |
st.success("Processing complete") | |
else: | |
st.error("Please upload a PDF file") | |
if __name__ == "__main__": | |
main() | |