langchain / app.py
danielle2003's picture
Create app.py
c1c7ce6 verified
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
import google.generativeai as genai
from langchain.vectorstores import FAISS
from langchain.prompts import PromptTemplate
from langchain.chains.question_answering import load_qa_chain
from dotenv import load_dotenv
load_dotenv()
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
def get_pdf_text(pdf_docs):
text = ""
pdf_reader = PdfReader(pdf_docs)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
from langchain_google_genai import GoogleGenerativeAIEmbeddings
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
vector_store = FAISS.from_texts(text_chunks, embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
from langchain_google_genai import ChatGoogleGenerativeAI
prompt_template = """
Answer the question as detailed as possible from the provided context and make sure to provide all the details.
If the answer is not present in the provided context, just say "Answer is not available in context". Do not provide
the wrong answer.
Context:\n{context}?\n
Question:\n{question}\n
Answer:
"""
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def user_input(user_question):
from langchain_google_genai import GoogleGenerativeAIEmbeddings
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
st.write("Reply:", response["output_text"])
def main():
st.set_page_config(page_title="Chat with PDF")
st.header("Chat with PDF using Gemini AI")
user_question = st.text_input("Ask a question about the PDF file")
if user_question:
user_input(user_question)
with st.sidebar:
st.title("Menu")
pdf_docs = st.file_uploader("Upload your PDF file here")
if st.button("Submit & Process"):
if pdf_docs:
with st.spinner("Processing..."):
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks)
st.success("Processing complete")
else:
st.error("Please upload a PDF file")
if __name__ == "__main__":
main()