import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter import os import google.generativeai as genai from langchain.vectorstores import FAISS from langchain.prompts import PromptTemplate from langchain.chains.question_answering import load_qa_chain from dotenv import load_dotenv load_dotenv() genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) def get_pdf_text(pdf_docs): text = "" pdf_reader = PdfReader(pdf_docs) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) chunks = text_splitter.split_text(text) return chunks def get_vector_store(text_chunks): from langchain_google_genai import GoogleGenerativeAIEmbeddings embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") vector_store = FAISS.from_texts(text_chunks, embeddings) vector_store.save_local("faiss_index") def get_conversational_chain(): from langchain_google_genai import ChatGoogleGenerativeAI prompt_template = """ Answer the question as detailed as possible from the provided context and make sure to provide all the details. If the answer is not present in the provided context, just say "Answer is not available in context". Do not provide the wrong answer. Context:\n{context}?\n Question:\n{question}\n Answer: """ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) return chain def user_input(user_question): from langchain_google_genai import GoogleGenerativeAIEmbeddings embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) docs = new_db.similarity_search(user_question) chain = get_conversational_chain() response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True) st.write("Reply:", response["output_text"]) def main(): st.set_page_config(page_title="Chat with PDF") st.header("Chat with PDF using Gemini AI") user_question = st.text_input("Ask a question about the PDF file") if user_question: user_input(user_question) with st.sidebar: st.title("Menu") pdf_docs = st.file_uploader("Upload your PDF file here") if st.button("Submit & Process"): if pdf_docs: with st.spinner("Processing..."): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) get_vector_store(text_chunks) st.success("Processing complete") else: st.error("Please upload a PDF file") if __name__ == "__main__": main()