ragiator / adversarial_framework.py
chibuzordev's picture
Upload 5 files
d3ae497 verified
# adversarial_framework.py
from typing import Literal, Dict, List, Tuple
from difflib import SequenceMatcher
from sentence_transformers import SentenceTransformer, util
from numpy.polynomial.polynomial import Polynomial
import nlpaug.augmenter.word as naw
import nltk
import numpy as np
import pandas as pd
import base64
from datetime import datetime
from io import BytesIO
import matplotlib.pyplot as plt
nltk.download('averaged_perceptron_tagger_eng')
class StatisticalEvaluator:
"""
Computes statistical insights over response similarity scores.
Useful for summarizing adversarial robustness.
"""
def __init__(self, scores: List[float]):
self.scores = np.array(scores)
def mean(self) -> float:
return round(np.mean(self.scores), 2)
def median(self) -> float:
return round(np.median(self.scores), 2)
def variance(self) -> float:
return round(np.var(self.scores), 2)
def std_dev(self) -> float:
return round(np.std(self.scores), 2)
def min_score(self) -> float:
return round(np.min(self.scores), 2)
def max_score(self) -> float:
return round(np.max(self.scores), 2)
def summary(self) -> Dict[str, float]:
return {
"mean": self.mean(),
"median": self.median(),
"std_dev": self.std_dev(),
"variance": self.variance(),
"min": self.min_score(),
"max": self.max_score(),
}
class SimilarityCalculator:
def __init__(self, model_name: str = "sentence-transformers/paraphrase-MiniLM-L3-v2"):
self.model = SentenceTransformer(model_name)
def cosine_similarity(self, original: str, perturbed: str) -> float:
emb1 = self.model.encode(original, convert_to_tensor=True)
emb2 = self.model.encode(perturbed, convert_to_tensor=True)
raw_score = util.pytorch_cos_sim(emb1, emb2).item()
clamped_score = max(0.0, min(raw_score, 1.0))
return round(clamped_score * 100, 2)
def sequence_similarity(self, original: str, perturbed: str) -> float:
return round(SequenceMatcher(None, original, perturbed).ratio() * 100, 2)
class AdversarialRiskCalculator:
def __init__(self, alpha: float = 2, beta: float = 1.5):
self.alpha = alpha
self.beta = beta
def compute_ari(self, query_sim: float, response_sim: float) -> float:
q, r = query_sim / 100, response_sim / 100
ari = ((1 - r) ** self.alpha) * ((1 + (1 - q)) ** self.beta)
return round(ari * 100, 2)
class PSCAnalyzer:
def __init__(self, degree: int = 5, r: int = 10):
self.r = r
self.degree = degree
def _bin_data(self, x: np.ndarray, y: np.ndarray, mode='max') -> Tuple[np.ndarray, np.ndarray]:
bins = np.linspace(min(x), max(x), self.r + 1)
best_x, best_y = [], []
for i in range(self.r):
mask = (x >= bins[i]) & (x < bins[i + 1])
sub_x, sub_y = x[mask], y[mask]
if len(sub_x) > 0:
if mode == 'max':
idx = np.argmax(sub_y)
elif mode == 'min':
idx = np.argmin(sub_y)
else:
raise ValueError("mode must be 'max' or 'min'")
best_x.append(sub_x[idx])
best_y.append(sub_y[idx])
return np.array(best_x), np.array(best_y)
def fit_and_auc(self, x, y):
x = np.array(x)
y = np.array(y)
coeffs = np.polyfit(x, y, self.degree)
poly_fn = np.poly1d(coeffs)
fitted_y = poly_fn(x)
auc_val = round(np.trapz(fitted_y, x), 4)
return auc_val, fitted_y
def plot_curve(self, x: np.ndarray, y: np.ndarray, fitted: np.ndarray, title: str, label: str, save_path=None):
plt.figure(figsize=(8, 5))
plt.plot(x, y, 'o', label='Sampled Points')
plt.plot(x, fitted, '--', label='Fitted Curve')
plt.xlabel('Perturbation / Queries')
plt.ylabel(label)
plt.title(title)
plt.legend()
plt.grid(True)
if save_path:
plt.savefig(save_path)
plt.show()
def evaluate(self, x_vals: List[float], y_vals: List[float], mode: str = 'max', label: str = 'ASR Curve') -> float:
x, y = self._bin_data(np.array(x_vals), np.array(y_vals), mode=mode)
auc_val, fitted = self.fit_and_auc(x, y)
self.plot_curve(x, y, fitted, title=f"PSC-{label}", label=label)
return auc_val
def run_psc_analysis(self, x_vals: List[float], y_vals: List[float], save_csv: str ="psc_export.csv", plot : bool = True):
auc = self.evaluate(x_vals, y_vals, mode="max", label="Semantic Similarity" if plot else "")
df = pd.DataFrame({"perturbation_level": x_vals, "response_similarity": y_vals})
df.to_csv(save_csv, index=False)
print(f"πŸ“‰ PSC-AUC: {auc} | πŸ“ CSV saved to: {save_csv}")
return auc
class TextPerturber:
def __init__(self):
self.methods = {
"synonym": naw.SynonymAug(aug_src='wordnet'),
"delete": naw.RandomWordAug(action="delete"),
"contextual": naw.ContextualWordEmbsAug()
}
def perturb(self, input_text: str, aug_method: Literal["synonym", "delete", "contextual"] = "synonym") -> str:
if aug_method not in self.methods:
raise ValueError(f"Invalid method '{aug_method}'. Choose from {list(self.methods.keys())}.")
result = self.methods[aug_method].augment(input_text)
return result[0] if isinstance(result, list) else result
class AdversarialAttackPipeline:
def __init__(self, answer_generator):
self.similarity = SimilarityCalculator()
self.risk_calculator = AdversarialRiskCalculator()
self.perturber = TextPerturber()
self.answer_generator = answer_generator
def run(self, query: str, top_k: int = 3, perturb_method: str = "synonym") -> Dict:
normal_response = self.answer_generator(query, top_k)
perturbed_query = self.perturber.perturb(query, perturb_method)
adversarial_response = self.perturber.perturb(normal_response, perturb_method)
perturbed_response = self.answer_generator(perturbed_query, top_k)
cos_metrics = {
"query_sim": self.similarity.cosine_similarity(query, perturbed_query),
"adversarial_sim": self.similarity.cosine_similarity(normal_response, adversarial_response),
"response_sim": self.similarity.cosine_similarity(normal_response, perturbed_response),
}
seq_metrics = {
"query_seq_match": self.similarity.sequence_similarity(query, perturbed_query),
"adv_seq_match": self.similarity.sequence_similarity(normal_response, adversarial_response),
"resp_seq_match": self.similarity.sequence_similarity(normal_response, perturbed_response),
}
ari = self.risk_calculator.compute_ari(cos_metrics['query_sim'], cos_metrics['response_sim'])
self._print_report(query, normal_response, perturbed_query, perturbed_response, adversarial_response, cos_metrics, seq_metrics, ari)
return {
"normal_query": query,
"normal_response": normal_response,
"perturbed_query": perturbed_query,
"perturbed_response": perturbed_response,
"adversarial_response": adversarial_response,
"cos_sim": cos_metrics,
"seq_match": seq_metrics,
"ari": ari,
}
def _print_report(self, query, normal, pert_q, pert_r, adv_r, cos, seq, ari):
print("πŸ”΅ Original Query:", query)
print("\n🟒 Normal Response:", normal)
print("\nπŸ”΄ Direct Perturbation of Generated Response:", adv_r)
print("\n🟠 Perturbed Query:", pert_q)
print("\nπŸ”΄ Perturbed Response:", pert_r)
print(f"\nπŸ“Š Cosine Sim β€” Perturbed Query: {cos['query_sim']}%, Adversarial: {cos['adversarial_sim']}%, Perturbed Response: {cos['response_sim']}%")
print(f"\nπŸ“Š Seq Match β€” Perturbed Query: {seq['query_seq_match']}%, Adversarial: {seq['adv_seq_match']}%, Perturbed Response: {seq['resp_seq_match']}%")
print(f"\nπŸ”Ί ARI (Adversarial Risk Index): {ari}")
def plot_to_base64(self, fig):
"""
Converts a Matplotlib figure to a base64-encoded image string.
Useful for sending plots in web apps or saving as embeddable outputs.
"""
buf = BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
image_base64 = base64.b64encode(buf.read()).decode('utf-8')
buf.close()
return f"data:image/png;base64,{image_base64}"
def evaluate_adversarial_robustness(self, query, method, k, psc_degree: int = 4,
ep_min: float = 0.1, ep_max: float = 4.1,
ep_gap: float = 0.2):
"""
Evaluate semantic robustness of the pipeline over increasing perturbation intensities.
Added as instance method so pipeline context (e.g. answer generator) does not need to be recreated.
"""
epsilons = np.arange(ep_min, ep_max, ep_gap)
x_vals, y_vals, ari_vals = [], [], []
for epsilon in epsilons:
result = self.run(query=query, top_k=k, perturb_method=method)
x_vals.append(round(epsilon, 2))
y_vals.append(result['cos_sim']['response_sim'])
ari_vals.append(result['ari'])
auc = PSCAnalyzer(degree=psc_degree, r=10).evaluate(x_vals, y_vals, mode="max", label="Semantic Similarity")
stats = StatisticalEvaluator(y_vals).summary()
stats_text = "\n".join([f"{k}: {v}" for k, v in stats.items()])
# Save CSV with full results and stats
df = pd.DataFrame({
"Perturbation_Level": x_vals,
"Response_Similarity": y_vals,
"ARI": ari_vals
})
summary_df = pd.DataFrame.from_dict(stats, orient='index', columns=["Response_Similarity_Stats"])
summary_df.reset_index(inplace=True)
summary_df.rename(columns={"index": "Metric"}, inplace=True)
export_df = pd.concat([df, pd.DataFrame([{}]), summary_df], ignore_index=True)
export_df.to_csv("gradio_output.csv", index=False)
coeffs = np.polyfit(x_vals, y_vals, psc_degree)
poly_fn = np.poly1d(coeffs)
fitted = poly_fn(x_vals)
fig, ax = plt.subplots()
ax.plot(x_vals, y_vals, 'o', label='Sampled Points')
ax.plot(x_vals, fitted, '--', label='Fitted Curve')
ax.set_xlabel('Perturbation Level (Epsilon)')
ax.set_ylabel('Semantic Similarity')
ax.set_title('Perturbation Sensitivity Curve (PSC)')
ax.legend()
ax.grid(True)
return stats_text, auc, fig