File size: 11,115 Bytes
d3ae497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# adversarial_framework.py

from typing import Literal, Dict, List, Tuple
from difflib import SequenceMatcher
from sentence_transformers import SentenceTransformer, util
from numpy.polynomial.polynomial import Polynomial
import nlpaug.augmenter.word as naw
import nltk
import numpy as np
import pandas as pd
import base64
from datetime import datetime
from io import BytesIO
import matplotlib.pyplot as plt
nltk.download('averaged_perceptron_tagger_eng')

class StatisticalEvaluator:
    """

    Computes statistical insights over response similarity scores.

    Useful for summarizing adversarial robustness.

    """
    def __init__(self, scores: List[float]):
        self.scores = np.array(scores)

    def mean(self) -> float:
        return round(np.mean(self.scores), 2)

    def median(self) -> float:
        return round(np.median(self.scores), 2)

    def variance(self) -> float:
        return round(np.var(self.scores), 2)

    def std_dev(self) -> float:
        return round(np.std(self.scores), 2)

    def min_score(self) -> float:
        return round(np.min(self.scores), 2)

    def max_score(self) -> float:
        return round(np.max(self.scores), 2)

    def summary(self) -> Dict[str, float]:
        return {
            "mean": self.mean(),
            "median": self.median(),
            "std_dev": self.std_dev(),
            "variance": self.variance(),
            "min": self.min_score(),
            "max": self.max_score(),
        }

class SimilarityCalculator:
    def __init__(self, model_name: str = "sentence-transformers/paraphrase-MiniLM-L3-v2"):
        self.model = SentenceTransformer(model_name)

    def cosine_similarity(self, original: str, perturbed: str) -> float:
        emb1 = self.model.encode(original, convert_to_tensor=True)
        emb2 = self.model.encode(perturbed, convert_to_tensor=True)
        raw_score = util.pytorch_cos_sim(emb1, emb2).item()
        clamped_score = max(0.0, min(raw_score, 1.0))
        return round(clamped_score * 100, 2)

    def sequence_similarity(self, original: str, perturbed: str) -> float:
        return round(SequenceMatcher(None, original, perturbed).ratio() * 100, 2)

class AdversarialRiskCalculator:
    def __init__(self, alpha: float = 2, beta: float = 1.5):
        self.alpha = alpha
        self.beta = beta

    def compute_ari(self, query_sim: float, response_sim: float) -> float:
        q, r = query_sim / 100, response_sim / 100
        ari = ((1 - r) ** self.alpha) * ((1 + (1 - q)) ** self.beta)
        return round(ari * 100, 2)

class PSCAnalyzer:
    def __init__(self, degree: int = 5, r: int = 10):
        self.r = r
        self.degree = degree

    def _bin_data(self, x: np.ndarray, y: np.ndarray, mode='max') -> Tuple[np.ndarray, np.ndarray]:
        bins = np.linspace(min(x), max(x), self.r + 1)
        best_x, best_y = [], []

        for i in range(self.r):
            mask = (x >= bins[i]) & (x < bins[i + 1])
            sub_x, sub_y = x[mask], y[mask]

            if len(sub_x) > 0:
                if mode == 'max':
                    idx = np.argmax(sub_y)
                elif mode == 'min':
                    idx = np.argmin(sub_y)
                else:
                    raise ValueError("mode must be 'max' or 'min'")

                best_x.append(sub_x[idx])
                best_y.append(sub_y[idx])

        return np.array(best_x), np.array(best_y)

    def fit_and_auc(self, x, y):
        x = np.array(x)
        y = np.array(y)

        coeffs = np.polyfit(x, y, self.degree)
        poly_fn = np.poly1d(coeffs)
        fitted_y = poly_fn(x)

        auc_val = round(np.trapz(fitted_y, x), 4)
        return auc_val, fitted_y

    def plot_curve(self, x: np.ndarray, y: np.ndarray, fitted: np.ndarray, title: str, label: str, save_path=None):
        plt.figure(figsize=(8, 5))
        plt.plot(x, y, 'o', label='Sampled Points')
        plt.plot(x, fitted, '--', label='Fitted Curve')
        plt.xlabel('Perturbation / Queries')
        plt.ylabel(label)
        plt.title(title)
        plt.legend()
        plt.grid(True)
        if save_path:
            plt.savefig(save_path)
        plt.show()

    def evaluate(self, x_vals: List[float], y_vals: List[float], mode: str = 'max', label: str = 'ASR Curve') -> float:
        x, y = self._bin_data(np.array(x_vals), np.array(y_vals), mode=mode)
        auc_val, fitted = self.fit_and_auc(x, y)
        self.plot_curve(x, y, fitted, title=f"PSC-{label}", label=label)
        return auc_val

    def run_psc_analysis(self, x_vals: List[float], y_vals: List[float], save_csv: str ="psc_export.csv", plot : bool = True):
        auc = self.evaluate(x_vals, y_vals, mode="max", label="Semantic Similarity" if plot else "")
        df = pd.DataFrame({"perturbation_level": x_vals, "response_similarity": y_vals})
        df.to_csv(save_csv, index=False)
        print(f"πŸ“‰ PSC-AUC: {auc} | πŸ“ CSV saved to: {save_csv}")
        return auc

class TextPerturber:
    def __init__(self):
        self.methods = {
            "synonym": naw.SynonymAug(aug_src='wordnet'),
            "delete": naw.RandomWordAug(action="delete"),
            "contextual": naw.ContextualWordEmbsAug()
        }

    def perturb(self, input_text: str, aug_method: Literal["synonym", "delete", "contextual"] = "synonym") -> str:
        if aug_method not in self.methods:
            raise ValueError(f"Invalid method '{aug_method}'. Choose from {list(self.methods.keys())}.")
        result = self.methods[aug_method].augment(input_text)
        return result[0] if isinstance(result, list) else result

class AdversarialAttackPipeline:
    def __init__(self, answer_generator):
        self.similarity = SimilarityCalculator()
        self.risk_calculator = AdversarialRiskCalculator()
        self.perturber = TextPerturber()
        self.answer_generator = answer_generator

    def run(self, query: str, top_k: int = 3, perturb_method: str = "synonym") -> Dict:
        normal_response = self.answer_generator(query, top_k)
        perturbed_query = self.perturber.perturb(query, perturb_method)
        adversarial_response = self.perturber.perturb(normal_response, perturb_method)
        perturbed_response = self.answer_generator(perturbed_query, top_k)

        cos_metrics = {
            "query_sim": self.similarity.cosine_similarity(query, perturbed_query),
            "adversarial_sim": self.similarity.cosine_similarity(normal_response, adversarial_response),
            "response_sim": self.similarity.cosine_similarity(normal_response, perturbed_response),
        }

        seq_metrics = {
            "query_seq_match": self.similarity.sequence_similarity(query, perturbed_query),
            "adv_seq_match": self.similarity.sequence_similarity(normal_response, adversarial_response),
            "resp_seq_match": self.similarity.sequence_similarity(normal_response, perturbed_response),
        }

        ari = self.risk_calculator.compute_ari(cos_metrics['query_sim'], cos_metrics['response_sim'])

        self._print_report(query, normal_response, perturbed_query, perturbed_response, adversarial_response, cos_metrics, seq_metrics, ari)

        return {
            "normal_query": query,
            "normal_response": normal_response,
            "perturbed_query": perturbed_query,
            "perturbed_response": perturbed_response,
            "adversarial_response": adversarial_response,
            "cos_sim": cos_metrics,
            "seq_match": seq_metrics,
            "ari": ari,
        }

    def _print_report(self, query, normal, pert_q, pert_r, adv_r, cos, seq, ari):
        print("πŸ”΅ Original Query:", query)
        print("\n🟒 Normal Response:", normal)
        print("\nπŸ”΄ Direct Perturbation of Generated Response:", adv_r)
        print("\n🟠 Perturbed Query:", pert_q)
        print("\nπŸ”΄ Perturbed Response:", pert_r)
        print(f"\nπŸ“Š Cosine Sim β€” Perturbed Query: {cos['query_sim']}%, Adversarial: {cos['adversarial_sim']}%, Perturbed Response: {cos['response_sim']}%")
        print(f"\nπŸ“Š Seq Match β€” Perturbed Query: {seq['query_seq_match']}%, Adversarial: {seq['adv_seq_match']}%, Perturbed Response: {seq['resp_seq_match']}%")
        print(f"\nπŸ”Ί ARI (Adversarial Risk Index): {ari}")

    def plot_to_base64(self, fig):
        """

        Converts a Matplotlib figure to a base64-encoded image string.

        Useful for sending plots in web apps or saving as embeddable outputs.

        """
        buf = BytesIO()
        fig.savefig(buf, format='png')
        buf.seek(0)
        image_base64 = base64.b64encode(buf.read()).decode('utf-8')
        buf.close()
        return f"data:image/png;base64,{image_base64}"

    def evaluate_adversarial_robustness(self, query, method, k, psc_degree: int = 4, 

                                        ep_min: float = 0.1, ep_max: float = 4.1, 

                                        ep_gap: float = 0.2):
        """

        Evaluate semantic robustness of the pipeline over increasing perturbation intensities.

        Added as instance method so pipeline context (e.g. answer generator) does not need to be recreated.

        """
        epsilons = np.arange(ep_min, ep_max, ep_gap)
        x_vals, y_vals, ari_vals = [], [], []

        for epsilon in epsilons:
            result = self.run(query=query, top_k=k, perturb_method=method)
            x_vals.append(round(epsilon, 2))
            y_vals.append(result['cos_sim']['response_sim'])
            ari_vals.append(result['ari'])

        auc = PSCAnalyzer(degree=psc_degree, r=10).evaluate(x_vals, y_vals, mode="max", label="Semantic Similarity")

        stats = StatisticalEvaluator(y_vals).summary()
        stats_text = "\n".join([f"{k}: {v}" for k, v in stats.items()])

        # Save CSV with full results and stats
        df = pd.DataFrame({
            "Perturbation_Level": x_vals,
            "Response_Similarity": y_vals,
            "ARI": ari_vals
        })
        summary_df = pd.DataFrame.from_dict(stats, orient='index', columns=["Response_Similarity_Stats"])
        summary_df.reset_index(inplace=True)
        summary_df.rename(columns={"index": "Metric"}, inplace=True)
        export_df = pd.concat([df, pd.DataFrame([{}]), summary_df], ignore_index=True)
        export_df.to_csv("gradio_output.csv", index=False)

        coeffs = np.polyfit(x_vals, y_vals, psc_degree)
        poly_fn = np.poly1d(coeffs)
        fitted = poly_fn(x_vals)
        fig, ax = plt.subplots()
        ax.plot(x_vals, y_vals, 'o', label='Sampled Points')
        ax.plot(x_vals, fitted, '--', label='Fitted Curve')
        ax.set_xlabel('Perturbation Level (Epsilon)')
        ax.set_ylabel('Semantic Similarity')
        ax.set_title('Perturbation Sensitivity Curve (PSC)')
        ax.legend()
        ax.grid(True)
        
        return stats_text, auc, fig