|
|
|
""" |
|
Test script for the GAIA agent using real API keys. |
|
This script simulates GAIA benchmark questions and helps debug/improve the agent. |
|
""" |
|
|
|
import os |
|
import sys |
|
import json |
|
import tempfile |
|
from typing import List, Dict, Any, Optional |
|
import traceback |
|
import dotenv |
|
|
|
|
|
dotenv.load_dotenv() |
|
|
|
|
|
from core_agent import GAIAAgent |
|
|
|
|
|
SAMPLE_QUESTIONS = [ |
|
{ |
|
"task_id": "task_001", |
|
"question": "What is the capital of France?", |
|
"expected_answer": "Paris", |
|
"has_file": False, |
|
"file_content": None |
|
}, |
|
{ |
|
"task_id": "task_002", |
|
"question": "What is the square root of 144?", |
|
"expected_answer": "12", |
|
"has_file": False, |
|
"file_content": None |
|
}, |
|
{ |
|
"task_id": "task_003", |
|
"question": "If a train travels at 60 miles per hour, how far will it travel in 2.5 hours?", |
|
"expected_answer": "150 miles", |
|
"has_file": False, |
|
"file_content": None |
|
}, |
|
{ |
|
"task_id": "task_004", |
|
"question": ".rewsna eht sa 'thgir' drow eht etirw ,tfel fo etisoppo eht si tahW", |
|
"expected_answer": "right", |
|
"has_file": False, |
|
"file_content": None |
|
}, |
|
{ |
|
"task_id": "task_005", |
|
"question": "Analyze the data in the attached CSV file and tell me the total sales for the month of January.", |
|
"expected_answer": "$10,250.75", |
|
"has_file": True, |
|
"file_content": """Date,Product,Quantity,Price,Total |
|
2023-01-05,Widget A,10,25.99,259.90 |
|
2023-01-12,Widget B,5,45.50,227.50 |
|
2023-01-15,Widget C,20,50.25,1005.00 |
|
2023-01-20,Widget A,15,25.99,389.85 |
|
2023-01-25,Widget B,8,45.50,364.00 |
|
2023-01-28,Widget D,100,80.04,8004.50""" |
|
}, |
|
{ |
|
"task_id": "task_006", |
|
"question": "I'm making a grocery list for my mom, but she's a picky eater. She only eats foods that don't contain the letter 'e'. List 5 common fruits and vegetables she can eat.", |
|
"expected_answer": "Banana, Kiwi, Corn, Fig, Taro", |
|
"has_file": False, |
|
"file_content": None |
|
}, |
|
{ |
|
"task_id": "task_007", |
|
"question": "How many studio albums were published by Mercedes Sosa between 1972 and 1985?", |
|
"expected_answer": "12", |
|
"has_file": False, |
|
"file_content": None |
|
}, |
|
{ |
|
"task_id": "task_008", |
|
"question": "In the video https://www.youtube.com/watch?v=L1vXC1KMRd0, what color is primarily associated with the main character?", |
|
"expected_answer": "Blue", |
|
"has_file": False, |
|
"file_content": None |
|
} |
|
] |
|
|
|
def initialize_agent(): |
|
"""Initialize the GAIAAgent with appropriate API keys.""" |
|
print("Initializing GAIAAgent with API keys...") |
|
|
|
|
|
if os.getenv("XAI_API_KEY"): |
|
print("Using X.AI API key") |
|
try: |
|
agent = GAIAAgent( |
|
model_type="OpenAIServerModel", |
|
model_id="grok-3-latest", |
|
api_key=os.getenv("XAI_API_KEY"), |
|
api_base="https://api.x.ai/v1", |
|
temperature=0.2, |
|
executor_type="local", |
|
verbose=True, |
|
system_prompt_suffix=additional_system_prompt |
|
) |
|
print("Using OpenAIServerModel with X.AI API") |
|
return agent |
|
except Exception as e: |
|
print(f"Error initializing with X.AI API: {e}") |
|
traceback.print_exc() |
|
|
|
|
|
if os.getenv("OPENAI_API_KEY"): |
|
print("Using OpenAI API key") |
|
try: |
|
model_id = os.getenv("AGENT_MODEL_ID", "gpt-4o") |
|
agent = GAIAAgent( |
|
model_type="OpenAIServerModel", |
|
model_id=model_id, |
|
api_key=os.getenv("OPENAI_API_KEY"), |
|
temperature=0.2, |
|
executor_type="local", |
|
verbose=True |
|
) |
|
print(f"Using OpenAIServerModel with model_id: {model_id}") |
|
return agent |
|
except Exception as e: |
|
print(f"Error initializing with OpenAI API: {e}") |
|
traceback.print_exc() |
|
|
|
|
|
if os.getenv("HUGGINGFACEHUB_API_TOKEN"): |
|
print("Using Hugging Face API token") |
|
try: |
|
|
|
model_id = "tiiuae/falcon-7b-instruct" |
|
agent = GAIAAgent( |
|
model_type="HfApiModel", |
|
model_id=model_id, |
|
api_key=os.getenv("HUGGINGFACEHUB_API_TOKEN"), |
|
temperature=0.2, |
|
executor_type="local", |
|
verbose=True |
|
) |
|
print(f"Using HfApiModel with model_id: {model_id}") |
|
return agent |
|
except Exception as e: |
|
print(f"Error initializing with Hugging Face API: {e}") |
|
traceback.print_exc() |
|
|
|
print("ERROR: No valid API keys found in environment. Please set one of the following:") |
|
print("- XAI_API_KEY (for X.AI)") |
|
print("- OPENAI_API_KEY") |
|
print("- HUGGINGFACEHUB_API_TOKEN") |
|
return None |
|
|
|
def save_test_file(task_id: str, content: str) -> str: |
|
"""Save a test file to a temporary location.""" |
|
temp_dir = tempfile.gettempdir() |
|
file_path = os.path.join(temp_dir, f"test_file_{task_id}.csv") |
|
|
|
with open(file_path, 'w') as f: |
|
f.write(content) |
|
|
|
return file_path |
|
|
|
def run_tests(): |
|
"""Run tests using the GAIAAgent with API keys.""" |
|
agent = initialize_agent() |
|
|
|
if not agent: |
|
print("Failed to initialize agent. Exiting.") |
|
return |
|
|
|
results = [] |
|
correct_count = 0 |
|
total_count = len(SAMPLE_QUESTIONS) |
|
|
|
for idx, question_data in enumerate(SAMPLE_QUESTIONS): |
|
task_id = question_data["task_id"] |
|
question = question_data["question"] |
|
expected = question_data["expected_answer"] |
|
|
|
print(f"\n{'='*80}") |
|
print(f"Question {idx+1}/{total_count}: {question}") |
|
print(f"Expected: {expected}") |
|
|
|
|
|
file_path = None |
|
if question_data["has_file"] and question_data["file_content"]: |
|
file_path = save_test_file(task_id, question_data["file_content"]) |
|
print(f"Created test file: {file_path}") |
|
|
|
|
|
try: |
|
answer = agent.answer_question(question, file_path) |
|
print(f"Agent answer: {answer}") |
|
|
|
|
|
is_correct = answer.lower() == expected.lower() |
|
if is_correct: |
|
correct_count += 1 |
|
print(f"β
CORRECT") |
|
else: |
|
print(f"β INCORRECT - Expected: {expected}") |
|
|
|
results.append({ |
|
"task_id": task_id, |
|
"question": question, |
|
"expected": expected, |
|
"answer": answer, |
|
"is_correct": is_correct |
|
}) |
|
except Exception as e: |
|
error_details = traceback.format_exc() |
|
print(f"Error processing question: {e}\n{error_details}") |
|
results.append({ |
|
"task_id": task_id, |
|
"question": question, |
|
"expected": expected, |
|
"answer": f"ERROR: {str(e)}", |
|
"is_correct": False |
|
}) |
|
|
|
|
|
accuracy = (correct_count / total_count) * 100 |
|
print(f"\n{'='*80}") |
|
print(f"Test Results: {correct_count}/{total_count} correct ({accuracy:.1f}%)") |
|
|
|
return results |
|
|
|
|
|
if __name__ == "__main__": |
|
print("Running tests for GAIA agent with API keys...") |
|
|
|
|
|
print("\nEnvironment information:") |
|
print(f"XAI_API_KEY set: {'Yes' if os.getenv('XAI_API_KEY') else 'No'}") |
|
print(f"OPENAI_API_KEY set: {'Yes' if os.getenv('OPENAI_API_KEY') else 'No'}") |
|
print(f"HUGGINGFACEHUB_API_TOKEN set: {'Yes' if os.getenv('HUGGINGFACEHUB_API_TOKEN') else 'No'}") |
|
print(f"AGENT_MODEL_TYPE: {os.getenv('AGENT_MODEL_TYPE', 'OpenAIServerModel')} (default: OpenAIServerModel)") |
|
print(f"AGENT_MODEL_ID: {os.getenv('AGENT_MODEL_ID', 'gpt-4o')} (default: gpt-4o)") |
|
|
|
results = run_tests() |
|
|
|
|
|
with open("test_results.json", "w") as f: |
|
json.dump(results, f, indent=2) |
|
|
|
print("\nResults saved to test_results.json") |