File size: 8,722 Bytes
68ed57f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
#!/usr/bin/env python3
"""
Test script for the GAIA agent using real API keys.
This script simulates GAIA benchmark questions and helps debug/improve the agent.
"""
import os
import sys
import json
import tempfile
from typing import List, Dict, Any, Optional
import traceback
import dotenv
# Load environment variables from .env file
dotenv.load_dotenv()
# Import our agent
from core_agent import GAIAAgent
# Simulation of GAIA benchmark questions
SAMPLE_QUESTIONS = [
{
"task_id": "task_001",
"question": "What is the capital of France?",
"expected_answer": "Paris",
"has_file": False,
"file_content": None
},
{
"task_id": "task_002",
"question": "What is the square root of 144?",
"expected_answer": "12",
"has_file": False,
"file_content": None
},
{
"task_id": "task_003",
"question": "If a train travels at 60 miles per hour, how far will it travel in 2.5 hours?",
"expected_answer": "150 miles",
"has_file": False,
"file_content": None
},
{
"task_id": "task_004",
"question": ".rewsna eht sa 'thgir' drow eht etirw ,tfel fo etisoppo eht si tahW",
"expected_answer": "right",
"has_file": False,
"file_content": None
},
{
"task_id": "task_005",
"question": "Analyze the data in the attached CSV file and tell me the total sales for the month of January.",
"expected_answer": "$10,250.75",
"has_file": True,
"file_content": """Date,Product,Quantity,Price,Total
2023-01-05,Widget A,10,25.99,259.90
2023-01-12,Widget B,5,45.50,227.50
2023-01-15,Widget C,20,50.25,1005.00
2023-01-20,Widget A,15,25.99,389.85
2023-01-25,Widget B,8,45.50,364.00
2023-01-28,Widget D,100,80.04,8004.50"""
},
{
"task_id": "task_006",
"question": "I'm making a grocery list for my mom, but she's a picky eater. She only eats foods that don't contain the letter 'e'. List 5 common fruits and vegetables she can eat.",
"expected_answer": "Banana, Kiwi, Corn, Fig, Taro",
"has_file": False,
"file_content": None
},
{
"task_id": "task_007",
"question": "How many studio albums were published by Mercedes Sosa between 1972 and 1985?",
"expected_answer": "12",
"has_file": False,
"file_content": None
},
{
"task_id": "task_008",
"question": "In the video https://www.youtube.com/watch?v=L1vXC1KMRd0, what color is primarily associated with the main character?",
"expected_answer": "Blue",
"has_file": False,
"file_content": None
}
]
def initialize_agent():
"""Initialize the GAIAAgent with appropriate API keys."""
print("Initializing GAIAAgent with API keys...")
# Try X.AI first (xAI) with the correct API endpoint
if os.getenv("XAI_API_KEY"):
print("Using X.AI API key")
try:
agent = GAIAAgent(
model_type="OpenAIServerModel",
model_id="grok-3-latest", # Use the X.AI model
api_key=os.getenv("XAI_API_KEY"),
api_base="https://api.x.ai/v1", # Correct X.AI endpoint
temperature=0.2,
executor_type="local",
verbose=True,
system_prompt_suffix=additional_system_prompt # Add our hints
)
print("Using OpenAIServerModel with X.AI API")
return agent
except Exception as e:
print(f"Error initializing with X.AI API: {e}")
traceback.print_exc()
# Then try OpenAI
if os.getenv("OPENAI_API_KEY"):
print("Using OpenAI API key")
try:
model_id = os.getenv("AGENT_MODEL_ID", "gpt-4o")
agent = GAIAAgent(
model_type="OpenAIServerModel",
model_id=model_id,
api_key=os.getenv("OPENAI_API_KEY"),
temperature=0.2,
executor_type="local",
verbose=True
)
print(f"Using OpenAIServerModel with model_id: {model_id}")
return agent
except Exception as e:
print(f"Error initializing with OpenAI API: {e}")
traceback.print_exc()
# Last resort, try Hugging Face
if os.getenv("HUGGINGFACEHUB_API_TOKEN"):
print("Using Hugging Face API token")
try:
# Use a smaller model that might work within free tier
model_id = "tiiuae/falcon-7b-instruct" # Try a smaller model that might be within free tier
agent = GAIAAgent(
model_type="HfApiModel",
model_id=model_id,
api_key=os.getenv("HUGGINGFACEHUB_API_TOKEN"),
temperature=0.2,
executor_type="local",
verbose=True
)
print(f"Using HfApiModel with model_id: {model_id}")
return agent
except Exception as e:
print(f"Error initializing with Hugging Face API: {e}")
traceback.print_exc()
print("ERROR: No valid API keys found in environment. Please set one of the following:")
print("- XAI_API_KEY (for X.AI)")
print("- OPENAI_API_KEY")
print("- HUGGINGFACEHUB_API_TOKEN")
return None
def save_test_file(task_id: str, content: str) -> str:
"""Save a test file to a temporary location."""
temp_dir = tempfile.gettempdir()
file_path = os.path.join(temp_dir, f"test_file_{task_id}.csv")
with open(file_path, 'w') as f:
f.write(content)
return file_path
def run_tests():
"""Run tests using the GAIAAgent with API keys."""
agent = initialize_agent()
if not agent:
print("Failed to initialize agent. Exiting.")
return
results = []
correct_count = 0
total_count = len(SAMPLE_QUESTIONS)
for idx, question_data in enumerate(SAMPLE_QUESTIONS):
task_id = question_data["task_id"]
question = question_data["question"]
expected = question_data["expected_answer"]
print(f"\n{'='*80}")
print(f"Question {idx+1}/{total_count}: {question}")
print(f"Expected: {expected}")
# Process any attached file
file_path = None
if question_data["has_file"] and question_data["file_content"]:
file_path = save_test_file(task_id, question_data["file_content"])
print(f"Created test file: {file_path}")
# Get answer from agent
try:
answer = agent.answer_question(question, file_path)
print(f"Agent answer: {answer}")
# Check if answer matches expected
is_correct = answer.lower() == expected.lower()
if is_correct:
correct_count += 1
print(f"β
CORRECT")
else:
print(f"β INCORRECT - Expected: {expected}")
results.append({
"task_id": task_id,
"question": question,
"expected": expected,
"answer": answer,
"is_correct": is_correct
})
except Exception as e:
error_details = traceback.format_exc()
print(f"Error processing question: {e}\n{error_details}")
results.append({
"task_id": task_id,
"question": question,
"expected": expected,
"answer": f"ERROR: {str(e)}",
"is_correct": False
})
# Print summary
accuracy = (correct_count / total_count) * 100
print(f"\n{'='*80}")
print(f"Test Results: {correct_count}/{total_count} correct ({accuracy:.1f}%)")
return results
if __name__ == "__main__":
print("Running tests for GAIA agent with API keys...")
# Print environment information
print("\nEnvironment information:")
print(f"XAI_API_KEY set: {'Yes' if os.getenv('XAI_API_KEY') else 'No'}")
print(f"OPENAI_API_KEY set: {'Yes' if os.getenv('OPENAI_API_KEY') else 'No'}")
print(f"HUGGINGFACEHUB_API_TOKEN set: {'Yes' if os.getenv('HUGGINGFACEHUB_API_TOKEN') else 'No'}")
print(f"AGENT_MODEL_TYPE: {os.getenv('AGENT_MODEL_TYPE', 'OpenAIServerModel')} (default: OpenAIServerModel)")
print(f"AGENT_MODEL_ID: {os.getenv('AGENT_MODEL_ID', 'gpt-4o')} (default: gpt-4o)")
results = run_tests()
# Save results to a file
with open("test_results.json", "w") as f:
json.dump(results, f, indent=2)
print("\nResults saved to test_results.json") |