cavargas10's picture
Upload 13 files
04fa6ac verified
import os
import copy
from functools import partial
from contextlib import nullcontext
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import numpy as np
from .utils import *
from .base import Trainer
from ..utils.general_utils import *
from ..utils.dist_utils import *
from ..utils import grad_clip_utils, elastic_utils
class BasicTrainer(Trainer):
"""
Trainer for basic training loop.
Args:
models (dict[str, nn.Module]): Models to train.
dataset (torch.utils.data.Dataset): Dataset.
output_dir (str): Output directory.
load_dir (str): Load directory.
step (int): Step to load.
batch_size (int): Batch size.
batch_size_per_gpu (int): Batch size per GPU. If specified, batch_size will be ignored.
batch_split (int): Split batch with gradient accumulation.
max_steps (int): Max steps.
optimizer (dict): Optimizer config.
lr_scheduler (dict): Learning rate scheduler config.
elastic (dict): Elastic memory management config.
grad_clip (float or dict): Gradient clip config.
ema_rate (float or list): Exponential moving average rates.
fp16_mode (str): FP16 mode.
- None: No FP16.
- 'inflat_all': Hold a inflated fp32 master param for all params.
- 'amp': Automatic mixed precision.
fp16_scale_growth (float): Scale growth for FP16 gradient backpropagation.
finetune_ckpt (dict): Finetune checkpoint.
log_param_stats (bool): Log parameter stats.
i_print (int): Print interval.
i_log (int): Log interval.
i_sample (int): Sample interval.
i_save (int): Save interval.
i_ddpcheck (int): DDP check interval.
"""
def __str__(self):
lines = []
lines.append(self.__class__.__name__)
lines.append(f' - Models:')
for name, model in self.models.items():
lines.append(f' - {name}: {model.__class__.__name__}')
lines.append(f' - Dataset: {indent(str(self.dataset), 2)}')
lines.append(f' - Dataloader:')
lines.append(f' - Sampler: {self.dataloader.sampler.__class__.__name__}')
lines.append(f' - Num workers: {self.dataloader.num_workers}')
lines.append(f' - Number of steps: {self.max_steps}')
lines.append(f' - Number of GPUs: {self.world_size}')
lines.append(f' - Batch size: {self.batch_size}')
lines.append(f' - Batch size per GPU: {self.batch_size_per_gpu}')
lines.append(f' - Batch split: {self.batch_split}')
lines.append(f' - Optimizer: {self.optimizer.__class__.__name__}')
lines.append(f' - Learning rate: {self.optimizer.param_groups[0]["lr"]}')
if self.lr_scheduler_config is not None:
lines.append(f' - LR scheduler: {self.lr_scheduler.__class__.__name__}')
if self.elastic_controller_config is not None:
lines.append(f' - Elastic memory: {indent(str(self.elastic_controller), 2)}')
if self.grad_clip is not None:
lines.append(f' - Gradient clip: {indent(str(self.grad_clip), 2)}')
lines.append(f' - EMA rate: {self.ema_rate}')
lines.append(f' - FP16 mode: {self.fp16_mode}')
return '\n'.join(lines)
def init_models_and_more(self, **kwargs):
"""
Initialize models and more.
"""
if self.world_size > 1:
# Prepare distributed data parallel
self.training_models = {
name: DDP(
model,
device_ids=[self.local_rank],
output_device=self.local_rank,
bucket_cap_mb=128,
find_unused_parameters=False
)
for name, model in self.models.items()
}
else:
self.training_models = self.models
# Build master params
self.model_params = sum(
[[p for p in model.parameters() if p.requires_grad] for model in self.models.values()]
, [])
if self.fp16_mode == 'amp':
self.master_params = self.model_params
self.scaler = torch.GradScaler() if self.fp16_mode == 'amp' else None
elif self.fp16_mode == 'inflat_all':
self.master_params = make_master_params(self.model_params)
self.fp16_scale_growth = self.fp16_scale_growth
self.log_scale = 20.0
elif self.fp16_mode is None:
self.master_params = self.model_params
else:
raise NotImplementedError(f'FP16 mode {self.fp16_mode} is not implemented.')
# Build EMA params
if self.is_master:
self.ema_params = [copy.deepcopy(self.master_params) for _ in self.ema_rate]
# Initialize optimizer
if hasattr(torch.optim, self.optimizer_config['name']):
self.optimizer = getattr(torch.optim, self.optimizer_config['name'])(self.master_params, **self.optimizer_config['args'])
else:
self.optimizer = globals()[self.optimizer_config['name']](self.master_params, **self.optimizer_config['args'])
# Initalize learning rate scheduler
if self.lr_scheduler_config is not None:
if hasattr(torch.optim.lr_scheduler, self.lr_scheduler_config['name']):
self.lr_scheduler = getattr(torch.optim.lr_scheduler, self.lr_scheduler_config['name'])(self.optimizer, **self.lr_scheduler_config['args'])
else:
self.lr_scheduler = globals()[self.lr_scheduler_config['name']](self.optimizer, **self.lr_scheduler_config['args'])
# Initialize elastic memory controller
if self.elastic_controller_config is not None:
assert any([isinstance(model, (elastic_utils.ElasticModule, elastic_utils.ElasticModuleMixin)) for model in self.models.values()]), \
'No elastic module found in models, please inherit from ElasticModule or ElasticModuleMixin'
self.elastic_controller = getattr(elastic_utils, self.elastic_controller_config['name'])(**self.elastic_controller_config['args'])
for model in self.models.values():
if isinstance(model, (elastic_utils.ElasticModule, elastic_utils.ElasticModuleMixin)):
model.register_memory_controller(self.elastic_controller)
# Initialize gradient clipper
if self.grad_clip is not None:
if isinstance(self.grad_clip, (float, int)):
self.grad_clip = float(self.grad_clip)
else:
self.grad_clip = getattr(grad_clip_utils, self.grad_clip['name'])(**self.grad_clip['args'])
def _master_params_to_state_dicts(self, master_params):
"""
Convert master params to dict of state_dicts.
"""
if self.fp16_mode == 'inflat_all':
master_params = unflatten_master_params(self.model_params, master_params)
state_dicts = {name: model.state_dict() for name, model in self.models.items()}
master_params_names = sum(
[[(name, n) for n, p in model.named_parameters() if p.requires_grad] for name, model in self.models.items()]
, [])
for i, (model_name, param_name) in enumerate(master_params_names):
state_dicts[model_name][param_name] = master_params[i]
return state_dicts
def _state_dicts_to_master_params(self, master_params, state_dicts):
"""
Convert a state_dict to master params.
"""
master_params_names = sum(
[[(name, n) for n, p in model.named_parameters() if p.requires_grad] for name, model in self.models.items()]
, [])
params = [state_dicts[name][param_name] for name, param_name in master_params_names]
if self.fp16_mode == 'inflat_all':
model_params_to_master_params(params, master_params)
else:
for i, param in enumerate(params):
master_params[i].data.copy_(param.data)
def load(self, load_dir, step=0):
"""
Load a checkpoint.
Should be called by all processes.
"""
if self.is_master:
print(f'\nLoading checkpoint from step {step}...', end='')
model_ckpts = {}
for name, model in self.models.items():
model_ckpt = torch.load(read_file_dist(os.path.join(load_dir, 'ckpts', f'{name}_step{step:07d}.pt')), map_location=self.device, weights_only=True)
model_ckpts[name] = model_ckpt
model.load_state_dict(model_ckpt)
if self.fp16_mode == 'inflat_all':
model.convert_to_fp16()
self._state_dicts_to_master_params(self.master_params, model_ckpts)
del model_ckpts
if self.is_master:
for i, ema_rate in enumerate(self.ema_rate):
ema_ckpts = {}
for name, model in self.models.items():
ema_ckpt = torch.load(os.path.join(load_dir, 'ckpts', f'{name}_ema{ema_rate}_step{step:07d}.pt'), map_location=self.device, weights_only=True)
ema_ckpts[name] = ema_ckpt
self._state_dicts_to_master_params(self.ema_params[i], ema_ckpts)
del ema_ckpts
misc_ckpt = torch.load(read_file_dist(os.path.join(load_dir, 'ckpts', f'misc_step{step:07d}.pt')), map_location=torch.device('cpu'), weights_only=False)
self.optimizer.load_state_dict(misc_ckpt['optimizer'])
self.step = misc_ckpt['step']
self.data_sampler.load_state_dict(misc_ckpt['data_sampler'])
if self.fp16_mode == 'amp':
self.scaler.load_state_dict(misc_ckpt['scaler'])
elif self.fp16_mode == 'inflat_all':
self.log_scale = misc_ckpt['log_scale']
if self.lr_scheduler_config is not None:
self.lr_scheduler.load_state_dict(misc_ckpt['lr_scheduler'])
if self.elastic_controller_config is not None:
self.elastic_controller.load_state_dict(misc_ckpt['elastic_controller'])
if self.grad_clip is not None and not isinstance(self.grad_clip, float):
self.grad_clip.load_state_dict(misc_ckpt['grad_clip'])
del misc_ckpt
if self.world_size > 1:
dist.barrier()
if self.is_master:
print(' Done.')
if self.world_size > 1:
self.check_ddp()
def save(self):
"""
Save a checkpoint.
Should be called only by the rank 0 process.
"""
assert self.is_master, 'save() should be called only by the rank 0 process.'
print(f'\nSaving checkpoint at step {self.step}...', end='')
model_ckpts = self._master_params_to_state_dicts(self.master_params)
for name, model_ckpt in model_ckpts.items():
torch.save(model_ckpt, os.path.join(self.output_dir, 'ckpts', f'{name}_step{self.step:07d}.pt'))
for i, ema_rate in enumerate(self.ema_rate):
ema_ckpts = self._master_params_to_state_dicts(self.ema_params[i])
for name, ema_ckpt in ema_ckpts.items():
torch.save(ema_ckpt, os.path.join(self.output_dir, 'ckpts', f'{name}_ema{ema_rate}_step{self.step:07d}.pt'))
misc_ckpt = {
'optimizer': self.optimizer.state_dict(),
'step': self.step,
'data_sampler': self.data_sampler.state_dict(),
}
if self.fp16_mode == 'amp':
misc_ckpt['scaler'] = self.scaler.state_dict()
elif self.fp16_mode == 'inflat_all':
misc_ckpt['log_scale'] = self.log_scale
if self.lr_scheduler_config is not None:
misc_ckpt['lr_scheduler'] = self.lr_scheduler.state_dict()
if self.elastic_controller_config is not None:
misc_ckpt['elastic_controller'] = self.elastic_controller.state_dict()
if self.grad_clip is not None and not isinstance(self.grad_clip, float):
misc_ckpt['grad_clip'] = self.grad_clip.state_dict()
torch.save(misc_ckpt, os.path.join(self.output_dir, 'ckpts', f'misc_step{self.step:07d}.pt'))
print(' Done.')
def finetune_from(self, finetune_ckpt):
"""
Finetune from a checkpoint.
Should be called by all processes.
"""
if self.is_master:
print('\nFinetuning from:')
for name, path in finetune_ckpt.items():
print(f' - {name}: {path}')
model_ckpts = {}
for name, model in self.models.items():
model_state_dict = model.state_dict()
if name in finetune_ckpt:
model_ckpt = torch.load(read_file_dist(finetune_ckpt[name]), map_location=self.device, weights_only=True)
for k, v in model_ckpt.items():
if model_ckpt[k].shape != model_state_dict[k].shape:
if self.is_master:
print(f'Warning: {k} shape mismatch, {model_ckpt[k].shape} vs {model_state_dict[k].shape}, skipped.')
model_ckpt[k] = model_state_dict[k]
model_ckpts[name] = model_ckpt
model.load_state_dict(model_ckpt)
if self.fp16_mode == 'inflat_all':
model.convert_to_fp16()
else:
if self.is_master:
print(f'Warning: {name} not found in finetune_ckpt, skipped.')
model_ckpts[name] = model_state_dict
self._state_dicts_to_master_params(self.master_params, model_ckpts)
del model_ckpts
if self.world_size > 1:
dist.barrier()
if self.is_master:
print('Done.')
if self.world_size > 1:
self.check_ddp()
def update_ema(self):
"""
Update exponential moving average.
Should only be called by the rank 0 process.
"""
assert self.is_master, 'update_ema() should be called only by the rank 0 process.'
for i, ema_rate in enumerate(self.ema_rate):
for master_param, ema_param in zip(self.master_params, self.ema_params[i]):
ema_param.detach().mul_(ema_rate).add_(master_param, alpha=1.0 - ema_rate)
def check_ddp(self):
"""
Check if DDP is working properly.
Should be called by all process.
"""
if self.is_master:
print('\nPerforming DDP check...')
if self.is_master:
print('Checking if parameters are consistent across processes...')
dist.barrier()
try:
for p in self.master_params:
# split to avoid OOM
for i in range(0, p.numel(), 10000000):
sub_size = min(10000000, p.numel() - i)
sub_p = p.detach().view(-1)[i:i+sub_size]
# gather from all processes
sub_p_gather = [torch.empty_like(sub_p) for _ in range(self.world_size)]
dist.all_gather(sub_p_gather, sub_p)
# check if equal
assert all([torch.equal(sub_p, sub_p_gather[i]) for i in range(self.world_size)]), 'parameters are not consistent across processes'
except AssertionError as e:
if self.is_master:
print(f'\n\033[91mError: {e}\033[0m')
print('DDP check failed.')
raise e
dist.barrier()
if self.is_master:
print('Done.')
def run_step(self, data_list):
"""
Run a training step.
"""
step_log = {'loss': {}, 'status': {}}
amp_context = partial(torch.autocast, device_type='cuda') if self.fp16_mode == 'amp' else nullcontext
elastic_controller_context = self.elastic_controller.record if self.elastic_controller_config is not None else nullcontext
# Train
losses = []
statuses = []
elastic_controller_logs = []
zero_grad(self.model_params)
for i, mb_data in enumerate(data_list):
## sync at the end of each batch split
sync_contexts = [self.training_models[name].no_sync for name in self.training_models] if i != len(data_list) - 1 and self.world_size > 1 else [nullcontext]
with nested_contexts(*sync_contexts), elastic_controller_context():
with amp_context():
loss, status = self.training_losses(**mb_data)
l = loss['loss'] / len(data_list)
## backward
if self.fp16_mode == 'amp':
self.scaler.scale(l).backward()
elif self.fp16_mode == 'inflat_all':
scaled_l = l * (2 ** self.log_scale)
scaled_l.backward()
else:
l.backward()
## log
losses.append(dict_foreach(loss, lambda x: x.item() if isinstance(x, torch.Tensor) else x))
statuses.append(dict_foreach(status, lambda x: x.item() if isinstance(x, torch.Tensor) else x))
if self.elastic_controller_config is not None:
elastic_controller_logs.append(self.elastic_controller.log())
## gradient clip
if self.grad_clip is not None:
if self.fp16_mode == 'amp':
self.scaler.unscale_(self.optimizer)
elif self.fp16_mode == 'inflat_all':
model_grads_to_master_grads(self.model_params, self.master_params)
self.master_params[0].grad.mul_(1.0 / (2 ** self.log_scale))
if isinstance(self.grad_clip, float):
grad_norm = torch.nn.utils.clip_grad_norm_(self.master_params, self.grad_clip)
else:
grad_norm = self.grad_clip(self.master_params)
if torch.isfinite(grad_norm):
statuses[-1]['grad_norm'] = grad_norm.item()
## step
if self.fp16_mode == 'amp':
prev_scale = self.scaler.get_scale()
self.scaler.step(self.optimizer)
self.scaler.update()
elif self.fp16_mode == 'inflat_all':
prev_scale = 2 ** self.log_scale
if not any(not p.grad.isfinite().all() for p in self.model_params):
if self.grad_clip is None:
model_grads_to_master_grads(self.model_params, self.master_params)
self.master_params[0].grad.mul_(1.0 / (2 ** self.log_scale))
self.optimizer.step()
master_params_to_model_params(self.model_params, self.master_params)
self.log_scale += self.fp16_scale_growth
else:
self.log_scale -= 1
else:
prev_scale = 1.0
if not any(not p.grad.isfinite().all() for p in self.model_params):
self.optimizer.step()
else:
print('\n\033[93mWarning: NaN detected in gradients. Skipping update.\033[0m')
## adjust learning rate
if self.lr_scheduler_config is not None:
statuses[-1]['lr'] = self.lr_scheduler.get_last_lr()[0]
self.lr_scheduler.step()
# Logs
step_log['loss'] = dict_reduce(losses, lambda x: np.mean(x))
step_log['status'] = dict_reduce(statuses, lambda x: np.mean(x), special_func={'min': lambda x: np.min(x), 'max': lambda x: np.max(x)})
if self.elastic_controller_config is not None:
step_log['elastic'] = dict_reduce(elastic_controller_logs, lambda x: np.mean(x))
if self.grad_clip is not None:
step_log['grad_clip'] = self.grad_clip if isinstance(self.grad_clip, float) else self.grad_clip.log()
# Check grad and norm of each param
if self.log_param_stats:
param_norms = {}
param_grads = {}
for name, param in self.backbone.named_parameters():
if param.requires_grad:
param_norms[name] = param.norm().item()
if param.grad is not None and torch.isfinite(param.grad).all():
param_grads[name] = param.grad.norm().item() / prev_scale
step_log['param_norms'] = param_norms
step_log['param_grads'] = param_grads
# Update exponential moving average
if self.is_master:
self.update_ema()
return step_log