Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import copy | |
from functools import partial | |
from contextlib import nullcontext | |
import torch | |
import torch.distributed as dist | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
import numpy as np | |
from .utils import * | |
from .base import Trainer | |
from ..utils.general_utils import * | |
from ..utils.dist_utils import * | |
from ..utils import grad_clip_utils, elastic_utils | |
class BasicTrainer(Trainer): | |
""" | |
Trainer for basic training loop. | |
Args: | |
models (dict[str, nn.Module]): Models to train. | |
dataset (torch.utils.data.Dataset): Dataset. | |
output_dir (str): Output directory. | |
load_dir (str): Load directory. | |
step (int): Step to load. | |
batch_size (int): Batch size. | |
batch_size_per_gpu (int): Batch size per GPU. If specified, batch_size will be ignored. | |
batch_split (int): Split batch with gradient accumulation. | |
max_steps (int): Max steps. | |
optimizer (dict): Optimizer config. | |
lr_scheduler (dict): Learning rate scheduler config. | |
elastic (dict): Elastic memory management config. | |
grad_clip (float or dict): Gradient clip config. | |
ema_rate (float or list): Exponential moving average rates. | |
fp16_mode (str): FP16 mode. | |
- None: No FP16. | |
- 'inflat_all': Hold a inflated fp32 master param for all params. | |
- 'amp': Automatic mixed precision. | |
fp16_scale_growth (float): Scale growth for FP16 gradient backpropagation. | |
finetune_ckpt (dict): Finetune checkpoint. | |
log_param_stats (bool): Log parameter stats. | |
i_print (int): Print interval. | |
i_log (int): Log interval. | |
i_sample (int): Sample interval. | |
i_save (int): Save interval. | |
i_ddpcheck (int): DDP check interval. | |
""" | |
def __str__(self): | |
lines = [] | |
lines.append(self.__class__.__name__) | |
lines.append(f' - Models:') | |
for name, model in self.models.items(): | |
lines.append(f' - {name}: {model.__class__.__name__}') | |
lines.append(f' - Dataset: {indent(str(self.dataset), 2)}') | |
lines.append(f' - Dataloader:') | |
lines.append(f' - Sampler: {self.dataloader.sampler.__class__.__name__}') | |
lines.append(f' - Num workers: {self.dataloader.num_workers}') | |
lines.append(f' - Number of steps: {self.max_steps}') | |
lines.append(f' - Number of GPUs: {self.world_size}') | |
lines.append(f' - Batch size: {self.batch_size}') | |
lines.append(f' - Batch size per GPU: {self.batch_size_per_gpu}') | |
lines.append(f' - Batch split: {self.batch_split}') | |
lines.append(f' - Optimizer: {self.optimizer.__class__.__name__}') | |
lines.append(f' - Learning rate: {self.optimizer.param_groups[0]["lr"]}') | |
if self.lr_scheduler_config is not None: | |
lines.append(f' - LR scheduler: {self.lr_scheduler.__class__.__name__}') | |
if self.elastic_controller_config is not None: | |
lines.append(f' - Elastic memory: {indent(str(self.elastic_controller), 2)}') | |
if self.grad_clip is not None: | |
lines.append(f' - Gradient clip: {indent(str(self.grad_clip), 2)}') | |
lines.append(f' - EMA rate: {self.ema_rate}') | |
lines.append(f' - FP16 mode: {self.fp16_mode}') | |
return '\n'.join(lines) | |
def init_models_and_more(self, **kwargs): | |
""" | |
Initialize models and more. | |
""" | |
if self.world_size > 1: | |
# Prepare distributed data parallel | |
self.training_models = { | |
name: DDP( | |
model, | |
device_ids=[self.local_rank], | |
output_device=self.local_rank, | |
bucket_cap_mb=128, | |
find_unused_parameters=False | |
) | |
for name, model in self.models.items() | |
} | |
else: | |
self.training_models = self.models | |
# Build master params | |
self.model_params = sum( | |
[[p for p in model.parameters() if p.requires_grad] for model in self.models.values()] | |
, []) | |
if self.fp16_mode == 'amp': | |
self.master_params = self.model_params | |
self.scaler = torch.GradScaler() if self.fp16_mode == 'amp' else None | |
elif self.fp16_mode == 'inflat_all': | |
self.master_params = make_master_params(self.model_params) | |
self.fp16_scale_growth = self.fp16_scale_growth | |
self.log_scale = 20.0 | |
elif self.fp16_mode is None: | |
self.master_params = self.model_params | |
else: | |
raise NotImplementedError(f'FP16 mode {self.fp16_mode} is not implemented.') | |
# Build EMA params | |
if self.is_master: | |
self.ema_params = [copy.deepcopy(self.master_params) for _ in self.ema_rate] | |
# Initialize optimizer | |
if hasattr(torch.optim, self.optimizer_config['name']): | |
self.optimizer = getattr(torch.optim, self.optimizer_config['name'])(self.master_params, **self.optimizer_config['args']) | |
else: | |
self.optimizer = globals()[self.optimizer_config['name']](self.master_params, **self.optimizer_config['args']) | |
# Initalize learning rate scheduler | |
if self.lr_scheduler_config is not None: | |
if hasattr(torch.optim.lr_scheduler, self.lr_scheduler_config['name']): | |
self.lr_scheduler = getattr(torch.optim.lr_scheduler, self.lr_scheduler_config['name'])(self.optimizer, **self.lr_scheduler_config['args']) | |
else: | |
self.lr_scheduler = globals()[self.lr_scheduler_config['name']](self.optimizer, **self.lr_scheduler_config['args']) | |
# Initialize elastic memory controller | |
if self.elastic_controller_config is not None: | |
assert any([isinstance(model, (elastic_utils.ElasticModule, elastic_utils.ElasticModuleMixin)) for model in self.models.values()]), \ | |
'No elastic module found in models, please inherit from ElasticModule or ElasticModuleMixin' | |
self.elastic_controller = getattr(elastic_utils, self.elastic_controller_config['name'])(**self.elastic_controller_config['args']) | |
for model in self.models.values(): | |
if isinstance(model, (elastic_utils.ElasticModule, elastic_utils.ElasticModuleMixin)): | |
model.register_memory_controller(self.elastic_controller) | |
# Initialize gradient clipper | |
if self.grad_clip is not None: | |
if isinstance(self.grad_clip, (float, int)): | |
self.grad_clip = float(self.grad_clip) | |
else: | |
self.grad_clip = getattr(grad_clip_utils, self.grad_clip['name'])(**self.grad_clip['args']) | |
def _master_params_to_state_dicts(self, master_params): | |
""" | |
Convert master params to dict of state_dicts. | |
""" | |
if self.fp16_mode == 'inflat_all': | |
master_params = unflatten_master_params(self.model_params, master_params) | |
state_dicts = {name: model.state_dict() for name, model in self.models.items()} | |
master_params_names = sum( | |
[[(name, n) for n, p in model.named_parameters() if p.requires_grad] for name, model in self.models.items()] | |
, []) | |
for i, (model_name, param_name) in enumerate(master_params_names): | |
state_dicts[model_name][param_name] = master_params[i] | |
return state_dicts | |
def _state_dicts_to_master_params(self, master_params, state_dicts): | |
""" | |
Convert a state_dict to master params. | |
""" | |
master_params_names = sum( | |
[[(name, n) for n, p in model.named_parameters() if p.requires_grad] for name, model in self.models.items()] | |
, []) | |
params = [state_dicts[name][param_name] for name, param_name in master_params_names] | |
if self.fp16_mode == 'inflat_all': | |
model_params_to_master_params(params, master_params) | |
else: | |
for i, param in enumerate(params): | |
master_params[i].data.copy_(param.data) | |
def load(self, load_dir, step=0): | |
""" | |
Load a checkpoint. | |
Should be called by all processes. | |
""" | |
if self.is_master: | |
print(f'\nLoading checkpoint from step {step}...', end='') | |
model_ckpts = {} | |
for name, model in self.models.items(): | |
model_ckpt = torch.load(read_file_dist(os.path.join(load_dir, 'ckpts', f'{name}_step{step:07d}.pt')), map_location=self.device, weights_only=True) | |
model_ckpts[name] = model_ckpt | |
model.load_state_dict(model_ckpt) | |
if self.fp16_mode == 'inflat_all': | |
model.convert_to_fp16() | |
self._state_dicts_to_master_params(self.master_params, model_ckpts) | |
del model_ckpts | |
if self.is_master: | |
for i, ema_rate in enumerate(self.ema_rate): | |
ema_ckpts = {} | |
for name, model in self.models.items(): | |
ema_ckpt = torch.load(os.path.join(load_dir, 'ckpts', f'{name}_ema{ema_rate}_step{step:07d}.pt'), map_location=self.device, weights_only=True) | |
ema_ckpts[name] = ema_ckpt | |
self._state_dicts_to_master_params(self.ema_params[i], ema_ckpts) | |
del ema_ckpts | |
misc_ckpt = torch.load(read_file_dist(os.path.join(load_dir, 'ckpts', f'misc_step{step:07d}.pt')), map_location=torch.device('cpu'), weights_only=False) | |
self.optimizer.load_state_dict(misc_ckpt['optimizer']) | |
self.step = misc_ckpt['step'] | |
self.data_sampler.load_state_dict(misc_ckpt['data_sampler']) | |
if self.fp16_mode == 'amp': | |
self.scaler.load_state_dict(misc_ckpt['scaler']) | |
elif self.fp16_mode == 'inflat_all': | |
self.log_scale = misc_ckpt['log_scale'] | |
if self.lr_scheduler_config is not None: | |
self.lr_scheduler.load_state_dict(misc_ckpt['lr_scheduler']) | |
if self.elastic_controller_config is not None: | |
self.elastic_controller.load_state_dict(misc_ckpt['elastic_controller']) | |
if self.grad_clip is not None and not isinstance(self.grad_clip, float): | |
self.grad_clip.load_state_dict(misc_ckpt['grad_clip']) | |
del misc_ckpt | |
if self.world_size > 1: | |
dist.barrier() | |
if self.is_master: | |
print(' Done.') | |
if self.world_size > 1: | |
self.check_ddp() | |
def save(self): | |
""" | |
Save a checkpoint. | |
Should be called only by the rank 0 process. | |
""" | |
assert self.is_master, 'save() should be called only by the rank 0 process.' | |
print(f'\nSaving checkpoint at step {self.step}...', end='') | |
model_ckpts = self._master_params_to_state_dicts(self.master_params) | |
for name, model_ckpt in model_ckpts.items(): | |
torch.save(model_ckpt, os.path.join(self.output_dir, 'ckpts', f'{name}_step{self.step:07d}.pt')) | |
for i, ema_rate in enumerate(self.ema_rate): | |
ema_ckpts = self._master_params_to_state_dicts(self.ema_params[i]) | |
for name, ema_ckpt in ema_ckpts.items(): | |
torch.save(ema_ckpt, os.path.join(self.output_dir, 'ckpts', f'{name}_ema{ema_rate}_step{self.step:07d}.pt')) | |
misc_ckpt = { | |
'optimizer': self.optimizer.state_dict(), | |
'step': self.step, | |
'data_sampler': self.data_sampler.state_dict(), | |
} | |
if self.fp16_mode == 'amp': | |
misc_ckpt['scaler'] = self.scaler.state_dict() | |
elif self.fp16_mode == 'inflat_all': | |
misc_ckpt['log_scale'] = self.log_scale | |
if self.lr_scheduler_config is not None: | |
misc_ckpt['lr_scheduler'] = self.lr_scheduler.state_dict() | |
if self.elastic_controller_config is not None: | |
misc_ckpt['elastic_controller'] = self.elastic_controller.state_dict() | |
if self.grad_clip is not None and not isinstance(self.grad_clip, float): | |
misc_ckpt['grad_clip'] = self.grad_clip.state_dict() | |
torch.save(misc_ckpt, os.path.join(self.output_dir, 'ckpts', f'misc_step{self.step:07d}.pt')) | |
print(' Done.') | |
def finetune_from(self, finetune_ckpt): | |
""" | |
Finetune from a checkpoint. | |
Should be called by all processes. | |
""" | |
if self.is_master: | |
print('\nFinetuning from:') | |
for name, path in finetune_ckpt.items(): | |
print(f' - {name}: {path}') | |
model_ckpts = {} | |
for name, model in self.models.items(): | |
model_state_dict = model.state_dict() | |
if name in finetune_ckpt: | |
model_ckpt = torch.load(read_file_dist(finetune_ckpt[name]), map_location=self.device, weights_only=True) | |
for k, v in model_ckpt.items(): | |
if model_ckpt[k].shape != model_state_dict[k].shape: | |
if self.is_master: | |
print(f'Warning: {k} shape mismatch, {model_ckpt[k].shape} vs {model_state_dict[k].shape}, skipped.') | |
model_ckpt[k] = model_state_dict[k] | |
model_ckpts[name] = model_ckpt | |
model.load_state_dict(model_ckpt) | |
if self.fp16_mode == 'inflat_all': | |
model.convert_to_fp16() | |
else: | |
if self.is_master: | |
print(f'Warning: {name} not found in finetune_ckpt, skipped.') | |
model_ckpts[name] = model_state_dict | |
self._state_dicts_to_master_params(self.master_params, model_ckpts) | |
del model_ckpts | |
if self.world_size > 1: | |
dist.barrier() | |
if self.is_master: | |
print('Done.') | |
if self.world_size > 1: | |
self.check_ddp() | |
def update_ema(self): | |
""" | |
Update exponential moving average. | |
Should only be called by the rank 0 process. | |
""" | |
assert self.is_master, 'update_ema() should be called only by the rank 0 process.' | |
for i, ema_rate in enumerate(self.ema_rate): | |
for master_param, ema_param in zip(self.master_params, self.ema_params[i]): | |
ema_param.detach().mul_(ema_rate).add_(master_param, alpha=1.0 - ema_rate) | |
def check_ddp(self): | |
""" | |
Check if DDP is working properly. | |
Should be called by all process. | |
""" | |
if self.is_master: | |
print('\nPerforming DDP check...') | |
if self.is_master: | |
print('Checking if parameters are consistent across processes...') | |
dist.barrier() | |
try: | |
for p in self.master_params: | |
# split to avoid OOM | |
for i in range(0, p.numel(), 10000000): | |
sub_size = min(10000000, p.numel() - i) | |
sub_p = p.detach().view(-1)[i:i+sub_size] | |
# gather from all processes | |
sub_p_gather = [torch.empty_like(sub_p) for _ in range(self.world_size)] | |
dist.all_gather(sub_p_gather, sub_p) | |
# check if equal | |
assert all([torch.equal(sub_p, sub_p_gather[i]) for i in range(self.world_size)]), 'parameters are not consistent across processes' | |
except AssertionError as e: | |
if self.is_master: | |
print(f'\n\033[91mError: {e}\033[0m') | |
print('DDP check failed.') | |
raise e | |
dist.barrier() | |
if self.is_master: | |
print('Done.') | |
def run_step(self, data_list): | |
""" | |
Run a training step. | |
""" | |
step_log = {'loss': {}, 'status': {}} | |
amp_context = partial(torch.autocast, device_type='cuda') if self.fp16_mode == 'amp' else nullcontext | |
elastic_controller_context = self.elastic_controller.record if self.elastic_controller_config is not None else nullcontext | |
# Train | |
losses = [] | |
statuses = [] | |
elastic_controller_logs = [] | |
zero_grad(self.model_params) | |
for i, mb_data in enumerate(data_list): | |
## sync at the end of each batch split | |
sync_contexts = [self.training_models[name].no_sync for name in self.training_models] if i != len(data_list) - 1 and self.world_size > 1 else [nullcontext] | |
with nested_contexts(*sync_contexts), elastic_controller_context(): | |
with amp_context(): | |
loss, status = self.training_losses(**mb_data) | |
l = loss['loss'] / len(data_list) | |
## backward | |
if self.fp16_mode == 'amp': | |
self.scaler.scale(l).backward() | |
elif self.fp16_mode == 'inflat_all': | |
scaled_l = l * (2 ** self.log_scale) | |
scaled_l.backward() | |
else: | |
l.backward() | |
## log | |
losses.append(dict_foreach(loss, lambda x: x.item() if isinstance(x, torch.Tensor) else x)) | |
statuses.append(dict_foreach(status, lambda x: x.item() if isinstance(x, torch.Tensor) else x)) | |
if self.elastic_controller_config is not None: | |
elastic_controller_logs.append(self.elastic_controller.log()) | |
## gradient clip | |
if self.grad_clip is not None: | |
if self.fp16_mode == 'amp': | |
self.scaler.unscale_(self.optimizer) | |
elif self.fp16_mode == 'inflat_all': | |
model_grads_to_master_grads(self.model_params, self.master_params) | |
self.master_params[0].grad.mul_(1.0 / (2 ** self.log_scale)) | |
if isinstance(self.grad_clip, float): | |
grad_norm = torch.nn.utils.clip_grad_norm_(self.master_params, self.grad_clip) | |
else: | |
grad_norm = self.grad_clip(self.master_params) | |
if torch.isfinite(grad_norm): | |
statuses[-1]['grad_norm'] = grad_norm.item() | |
## step | |
if self.fp16_mode == 'amp': | |
prev_scale = self.scaler.get_scale() | |
self.scaler.step(self.optimizer) | |
self.scaler.update() | |
elif self.fp16_mode == 'inflat_all': | |
prev_scale = 2 ** self.log_scale | |
if not any(not p.grad.isfinite().all() for p in self.model_params): | |
if self.grad_clip is None: | |
model_grads_to_master_grads(self.model_params, self.master_params) | |
self.master_params[0].grad.mul_(1.0 / (2 ** self.log_scale)) | |
self.optimizer.step() | |
master_params_to_model_params(self.model_params, self.master_params) | |
self.log_scale += self.fp16_scale_growth | |
else: | |
self.log_scale -= 1 | |
else: | |
prev_scale = 1.0 | |
if not any(not p.grad.isfinite().all() for p in self.model_params): | |
self.optimizer.step() | |
else: | |
print('\n\033[93mWarning: NaN detected in gradients. Skipping update.\033[0m') | |
## adjust learning rate | |
if self.lr_scheduler_config is not None: | |
statuses[-1]['lr'] = self.lr_scheduler.get_last_lr()[0] | |
self.lr_scheduler.step() | |
# Logs | |
step_log['loss'] = dict_reduce(losses, lambda x: np.mean(x)) | |
step_log['status'] = dict_reduce(statuses, lambda x: np.mean(x), special_func={'min': lambda x: np.min(x), 'max': lambda x: np.max(x)}) | |
if self.elastic_controller_config is not None: | |
step_log['elastic'] = dict_reduce(elastic_controller_logs, lambda x: np.mean(x)) | |
if self.grad_clip is not None: | |
step_log['grad_clip'] = self.grad_clip if isinstance(self.grad_clip, float) else self.grad_clip.log() | |
# Check grad and norm of each param | |
if self.log_param_stats: | |
param_norms = {} | |
param_grads = {} | |
for name, param in self.backbone.named_parameters(): | |
if param.requires_grad: | |
param_norms[name] = param.norm().item() | |
if param.grad is not None and torch.isfinite(param.grad).all(): | |
param_grads[name] = param.grad.norm().item() / prev_scale | |
step_log['param_norms'] = param_norms | |
step_log['param_grads'] = param_grads | |
# Update exponential moving average | |
if self.is_master: | |
self.update_ema() | |
return step_log | |