File size: 20,907 Bytes
04fa6ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import os
import copy
from functools import partial
from contextlib import nullcontext

import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import numpy as np

from .utils import *
from .base import Trainer
from ..utils.general_utils import *
from ..utils.dist_utils import *
from ..utils import grad_clip_utils, elastic_utils


class BasicTrainer(Trainer):
    """

    Trainer for basic training loop.

    

    Args:

        models (dict[str, nn.Module]): Models to train.

        dataset (torch.utils.data.Dataset): Dataset.

        output_dir (str): Output directory.

        load_dir (str): Load directory.

        step (int): Step to load.

        batch_size (int): Batch size.

        batch_size_per_gpu (int): Batch size per GPU. If specified, batch_size will be ignored.

        batch_split (int): Split batch with gradient accumulation.

        max_steps (int): Max steps.

        optimizer (dict): Optimizer config.

        lr_scheduler (dict): Learning rate scheduler config.

        elastic (dict): Elastic memory management config.

        grad_clip (float or dict): Gradient clip config.

        ema_rate (float or list): Exponential moving average rates.

        fp16_mode (str): FP16 mode.

            - None: No FP16.

            - 'inflat_all': Hold a inflated fp32 master param for all params.

            - 'amp': Automatic mixed precision.

        fp16_scale_growth (float): Scale growth for FP16 gradient backpropagation.

        finetune_ckpt (dict): Finetune checkpoint.

        log_param_stats (bool): Log parameter stats.

        i_print (int): Print interval.

        i_log (int): Log interval.

        i_sample (int): Sample interval.

        i_save (int): Save interval.

        i_ddpcheck (int): DDP check interval.

    """

    def __str__(self):
        lines = []
        lines.append(self.__class__.__name__)
        lines.append(f'  - Models:')
        for name, model in self.models.items():
            lines.append(f'    - {name}: {model.__class__.__name__}')
        lines.append(f'  - Dataset: {indent(str(self.dataset), 2)}')
        lines.append(f'  - Dataloader:')
        lines.append(f'    - Sampler: {self.dataloader.sampler.__class__.__name__}')
        lines.append(f'    - Num workers: {self.dataloader.num_workers}')
        lines.append(f'  - Number of steps: {self.max_steps}')
        lines.append(f'  - Number of GPUs: {self.world_size}')
        lines.append(f'  - Batch size: {self.batch_size}')
        lines.append(f'  - Batch size per GPU: {self.batch_size_per_gpu}')
        lines.append(f'  - Batch split: {self.batch_split}')
        lines.append(f'  - Optimizer: {self.optimizer.__class__.__name__}')
        lines.append(f'  - Learning rate: {self.optimizer.param_groups[0]["lr"]}')
        if self.lr_scheduler_config is not None:
            lines.append(f'  - LR scheduler: {self.lr_scheduler.__class__.__name__}')
        if self.elastic_controller_config is not None:
            lines.append(f'  - Elastic memory: {indent(str(self.elastic_controller), 2)}')
        if self.grad_clip is not None:
            lines.append(f'  - Gradient clip: {indent(str(self.grad_clip), 2)}')
        lines.append(f'  - EMA rate: {self.ema_rate}')
        lines.append(f'  - FP16 mode: {self.fp16_mode}')
        return '\n'.join(lines)
            
    def init_models_and_more(self, **kwargs):
        """

        Initialize models and more.

        """
        if self.world_size > 1:
            # Prepare distributed data parallel
            self.training_models = {
                name: DDP(
                    model,
                    device_ids=[self.local_rank],
                    output_device=self.local_rank,
                    bucket_cap_mb=128,
                    find_unused_parameters=False
                )
                for name, model in self.models.items()
            }
        else:
            self.training_models = self.models

        # Build master params
        self.model_params = sum(
            [[p for p in model.parameters() if p.requires_grad] for model in self.models.values()]
        , [])
        if self.fp16_mode == 'amp':
            self.master_params = self.model_params
            self.scaler = torch.GradScaler() if self.fp16_mode == 'amp' else None
        elif self.fp16_mode == 'inflat_all':
            self.master_params = make_master_params(self.model_params)
            self.fp16_scale_growth = self.fp16_scale_growth
            self.log_scale = 20.0
        elif self.fp16_mode is None:
            self.master_params = self.model_params
        else:
            raise NotImplementedError(f'FP16 mode {self.fp16_mode} is not implemented.')

        # Build EMA params
        if self.is_master:
            self.ema_params = [copy.deepcopy(self.master_params) for _ in self.ema_rate]

        # Initialize optimizer
        if hasattr(torch.optim, self.optimizer_config['name']):
            self.optimizer = getattr(torch.optim, self.optimizer_config['name'])(self.master_params, **self.optimizer_config['args'])
        else:
            self.optimizer = globals()[self.optimizer_config['name']](self.master_params, **self.optimizer_config['args'])
        
        # Initalize learning rate scheduler
        if self.lr_scheduler_config is not None:
            if hasattr(torch.optim.lr_scheduler, self.lr_scheduler_config['name']):
                self.lr_scheduler = getattr(torch.optim.lr_scheduler, self.lr_scheduler_config['name'])(self.optimizer, **self.lr_scheduler_config['args'])
            else:
                self.lr_scheduler = globals()[self.lr_scheduler_config['name']](self.optimizer, **self.lr_scheduler_config['args'])

        # Initialize elastic memory controller
        if self.elastic_controller_config is not None:
            assert any([isinstance(model, (elastic_utils.ElasticModule, elastic_utils.ElasticModuleMixin)) for model in self.models.values()]), \
                'No elastic module found in models, please inherit from ElasticModule or ElasticModuleMixin'
            self.elastic_controller = getattr(elastic_utils, self.elastic_controller_config['name'])(**self.elastic_controller_config['args'])
            for model in self.models.values():
                if isinstance(model, (elastic_utils.ElasticModule, elastic_utils.ElasticModuleMixin)):
                    model.register_memory_controller(self.elastic_controller)

        # Initialize gradient clipper
        if self.grad_clip is not None:
            if isinstance(self.grad_clip, (float, int)):
                self.grad_clip = float(self.grad_clip)
            else:
                self.grad_clip = getattr(grad_clip_utils, self.grad_clip['name'])(**self.grad_clip['args'])

    def _master_params_to_state_dicts(self, master_params):
        """

        Convert master params to dict of state_dicts.

        """
        if self.fp16_mode == 'inflat_all':
            master_params = unflatten_master_params(self.model_params, master_params)
        state_dicts = {name: model.state_dict() for name, model in self.models.items()}
        master_params_names = sum(
            [[(name, n) for n, p in model.named_parameters() if p.requires_grad] for name, model in self.models.items()]
        , [])
        for i, (model_name, param_name) in enumerate(master_params_names):
            state_dicts[model_name][param_name] = master_params[i]
        return state_dicts

    def _state_dicts_to_master_params(self, master_params, state_dicts):
        """

        Convert a state_dict to master params.

        """
        master_params_names = sum(
            [[(name, n) for n, p in model.named_parameters() if p.requires_grad] for name, model in self.models.items()]
        , [])
        params = [state_dicts[name][param_name] for name, param_name in master_params_names]
        if self.fp16_mode == 'inflat_all':
            model_params_to_master_params(params, master_params)
        else:
            for i, param in enumerate(params):
                master_params[i].data.copy_(param.data)

    def load(self, load_dir, step=0):
        """

        Load a checkpoint.

        Should be called by all processes.

        """
        if self.is_master:
            print(f'\nLoading checkpoint from step {step}...', end='')
            
        model_ckpts = {}
        for name, model in self.models.items():
            model_ckpt = torch.load(read_file_dist(os.path.join(load_dir, 'ckpts', f'{name}_step{step:07d}.pt')), map_location=self.device, weights_only=True)
            model_ckpts[name] = model_ckpt
            model.load_state_dict(model_ckpt)
            if self.fp16_mode == 'inflat_all':
                model.convert_to_fp16()
        self._state_dicts_to_master_params(self.master_params, model_ckpts)
        del model_ckpts

        if self.is_master:
            for i, ema_rate in enumerate(self.ema_rate):
                ema_ckpts = {}
                for name, model in self.models.items():
                    ema_ckpt = torch.load(os.path.join(load_dir, 'ckpts', f'{name}_ema{ema_rate}_step{step:07d}.pt'), map_location=self.device, weights_only=True)
                    ema_ckpts[name] = ema_ckpt
                self._state_dicts_to_master_params(self.ema_params[i], ema_ckpts)
                del ema_ckpts
        
        misc_ckpt = torch.load(read_file_dist(os.path.join(load_dir, 'ckpts', f'misc_step{step:07d}.pt')), map_location=torch.device('cpu'), weights_only=False)
        self.optimizer.load_state_dict(misc_ckpt['optimizer'])
        self.step = misc_ckpt['step']
        self.data_sampler.load_state_dict(misc_ckpt['data_sampler'])
        if self.fp16_mode == 'amp':
            self.scaler.load_state_dict(misc_ckpt['scaler'])
        elif self.fp16_mode == 'inflat_all':
            self.log_scale = misc_ckpt['log_scale']
        if self.lr_scheduler_config is not None:
            self.lr_scheduler.load_state_dict(misc_ckpt['lr_scheduler'])
        if self.elastic_controller_config is not None:
            self.elastic_controller.load_state_dict(misc_ckpt['elastic_controller'])
        if self.grad_clip is not None and not isinstance(self.grad_clip, float):
            self.grad_clip.load_state_dict(misc_ckpt['grad_clip'])
        del misc_ckpt

        if self.world_size > 1:
            dist.barrier()
        if self.is_master:
            print(' Done.')

        if self.world_size > 1:
            self.check_ddp()

    def save(self):
        """

        Save a checkpoint.

        Should be called only by the rank 0 process.

        """
        assert self.is_master, 'save() should be called only by the rank 0 process.'
        print(f'\nSaving checkpoint at step {self.step}...', end='')
        
        model_ckpts = self._master_params_to_state_dicts(self.master_params)
        for name, model_ckpt in model_ckpts.items():
            torch.save(model_ckpt, os.path.join(self.output_dir, 'ckpts', f'{name}_step{self.step:07d}.pt'))
        
        for i, ema_rate in enumerate(self.ema_rate):
            ema_ckpts = self._master_params_to_state_dicts(self.ema_params[i])
            for name, ema_ckpt in ema_ckpts.items():
                torch.save(ema_ckpt, os.path.join(self.output_dir, 'ckpts', f'{name}_ema{ema_rate}_step{self.step:07d}.pt'))

        misc_ckpt = {
            'optimizer': self.optimizer.state_dict(),
            'step': self.step,
            'data_sampler': self.data_sampler.state_dict(),
        }
        if self.fp16_mode == 'amp':
            misc_ckpt['scaler'] = self.scaler.state_dict()
        elif self.fp16_mode == 'inflat_all':
            misc_ckpt['log_scale'] = self.log_scale
        if self.lr_scheduler_config is not None:
            misc_ckpt['lr_scheduler'] = self.lr_scheduler.state_dict()
        if self.elastic_controller_config is not None:
            misc_ckpt['elastic_controller'] = self.elastic_controller.state_dict()
        if self.grad_clip is not None and not isinstance(self.grad_clip, float):
            misc_ckpt['grad_clip'] = self.grad_clip.state_dict()
        torch.save(misc_ckpt, os.path.join(self.output_dir, 'ckpts', f'misc_step{self.step:07d}.pt'))
        print(' Done.')

    def finetune_from(self, finetune_ckpt):
        """

        Finetune from a checkpoint.

        Should be called by all processes.

        """
        if self.is_master:
            print('\nFinetuning from:')
            for name, path in finetune_ckpt.items():
                print(f'  - {name}: {path}')
        
        model_ckpts = {}
        for name, model in self.models.items():
            model_state_dict = model.state_dict()
            if name in finetune_ckpt:
                model_ckpt = torch.load(read_file_dist(finetune_ckpt[name]), map_location=self.device, weights_only=True)
                for k, v in model_ckpt.items():
                    if model_ckpt[k].shape != model_state_dict[k].shape:
                        if self.is_master:
                            print(f'Warning: {k} shape mismatch, {model_ckpt[k].shape} vs {model_state_dict[k].shape}, skipped.')
                        model_ckpt[k] = model_state_dict[k]
                model_ckpts[name] = model_ckpt
                model.load_state_dict(model_ckpt)
                if self.fp16_mode == 'inflat_all':
                    model.convert_to_fp16()
            else:
                if self.is_master:
                    print(f'Warning: {name} not found in finetune_ckpt, skipped.')
                model_ckpts[name] = model_state_dict
        self._state_dicts_to_master_params(self.master_params, model_ckpts)
        del model_ckpts

        if self.world_size > 1:
            dist.barrier()
        if self.is_master:
            print('Done.')

        if self.world_size > 1:
            self.check_ddp()

    def update_ema(self):
        """

        Update exponential moving average.

        Should only be called by the rank 0 process.

        """
        assert self.is_master, 'update_ema() should be called only by the rank 0 process.'
        for i, ema_rate in enumerate(self.ema_rate):
            for master_param, ema_param in zip(self.master_params, self.ema_params[i]):
                ema_param.detach().mul_(ema_rate).add_(master_param, alpha=1.0 - ema_rate)

    def check_ddp(self):
        """

        Check if DDP is working properly.

        Should be called by all process.

        """
        if self.is_master:
            print('\nPerforming DDP check...')

        if self.is_master:
            print('Checking if parameters are consistent across processes...')
        dist.barrier()
        try:
            for p in self.master_params:
                # split to avoid OOM
                for i in range(0, p.numel(), 10000000):
                    sub_size = min(10000000, p.numel() - i)
                    sub_p = p.detach().view(-1)[i:i+sub_size]
                    # gather from all processes
                    sub_p_gather = [torch.empty_like(sub_p) for _ in range(self.world_size)]
                    dist.all_gather(sub_p_gather, sub_p)
                    # check if equal
                    assert all([torch.equal(sub_p, sub_p_gather[i]) for i in range(self.world_size)]), 'parameters are not consistent across processes'
        except AssertionError as e:
            if self.is_master:
                print(f'\n\033[91mError: {e}\033[0m')
                print('DDP check failed.')
            raise e

        dist.barrier()
        if self.is_master:
            print('Done.')

    def run_step(self, data_list):
        """

        Run a training step.

        """
        step_log = {'loss': {}, 'status': {}}
        amp_context = partial(torch.autocast, device_type='cuda') if self.fp16_mode == 'amp' else nullcontext
        elastic_controller_context = self.elastic_controller.record if self.elastic_controller_config is not None else nullcontext

        # Train
        losses = []
        statuses = []
        elastic_controller_logs = []
        zero_grad(self.model_params)
        for i, mb_data in enumerate(data_list):
            ## sync at the end of each batch split
            sync_contexts = [self.training_models[name].no_sync for name in self.training_models] if i != len(data_list) - 1 and self.world_size > 1 else [nullcontext]
            with nested_contexts(*sync_contexts), elastic_controller_context():
                with amp_context():
                    loss, status = self.training_losses(**mb_data)
                    l = loss['loss'] / len(data_list)
                ## backward
                if self.fp16_mode == 'amp':
                    self.scaler.scale(l).backward()
                elif self.fp16_mode == 'inflat_all':
                    scaled_l = l * (2 ** self.log_scale)
                    scaled_l.backward()
                else:
                    l.backward()
            ## log
            losses.append(dict_foreach(loss, lambda x: x.item() if isinstance(x, torch.Tensor) else x))
            statuses.append(dict_foreach(status, lambda x: x.item() if isinstance(x, torch.Tensor) else x))
            if self.elastic_controller_config is not None:
                elastic_controller_logs.append(self.elastic_controller.log())
        ## gradient clip
        if self.grad_clip is not None:
            if self.fp16_mode == 'amp':
                self.scaler.unscale_(self.optimizer)
            elif self.fp16_mode == 'inflat_all':
                model_grads_to_master_grads(self.model_params, self.master_params)
                self.master_params[0].grad.mul_(1.0 / (2 ** self.log_scale))
            if isinstance(self.grad_clip, float):
                grad_norm = torch.nn.utils.clip_grad_norm_(self.master_params, self.grad_clip)
            else:
                grad_norm = self.grad_clip(self.master_params)
            if torch.isfinite(grad_norm):
                statuses[-1]['grad_norm'] = grad_norm.item()
        ## step
        if self.fp16_mode == 'amp':
            prev_scale = self.scaler.get_scale()
            self.scaler.step(self.optimizer)
            self.scaler.update()
        elif self.fp16_mode == 'inflat_all':
            prev_scale = 2 ** self.log_scale
            if not any(not p.grad.isfinite().all() for p in self.model_params):
                if self.grad_clip is None:
                    model_grads_to_master_grads(self.model_params, self.master_params)
                    self.master_params[0].grad.mul_(1.0 / (2 ** self.log_scale))
                self.optimizer.step()
                master_params_to_model_params(self.model_params, self.master_params)
                self.log_scale += self.fp16_scale_growth
            else:
                self.log_scale -= 1
        else:
            prev_scale = 1.0
            if not any(not p.grad.isfinite().all() for p in self.model_params):
                self.optimizer.step()
            else:
                print('\n\033[93mWarning: NaN detected in gradients. Skipping update.\033[0m') 
        ## adjust learning rate
        if self.lr_scheduler_config is not None:
            statuses[-1]['lr'] = self.lr_scheduler.get_last_lr()[0]
            self.lr_scheduler.step()

        # Logs
        step_log['loss'] = dict_reduce(losses, lambda x: np.mean(x))
        step_log['status'] = dict_reduce(statuses, lambda x: np.mean(x), special_func={'min': lambda x: np.min(x), 'max': lambda x: np.max(x)})
        if self.elastic_controller_config is not None:
            step_log['elastic'] = dict_reduce(elastic_controller_logs, lambda x: np.mean(x))
        if self.grad_clip is not None:
            step_log['grad_clip'] = self.grad_clip if isinstance(self.grad_clip, float) else self.grad_clip.log()
            
        # Check grad and norm of each param
        if self.log_param_stats:
            param_norms = {}
            param_grads = {}
            for name, param in self.backbone.named_parameters():
                if param.requires_grad:
                    param_norms[name] = param.norm().item()
                    if param.grad is not None and torch.isfinite(param.grad).all():
                        param_grads[name] = param.grad.norm().item() / prev_scale
            step_log['param_norms'] = param_norms
            step_log['param_grads'] = param_grads

        # Update exponential moving average
        if self.is_master:
            self.update_ema()

        return step_log