Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,907 Bytes
04fa6ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
import os
import copy
from functools import partial
from contextlib import nullcontext
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import numpy as np
from .utils import *
from .base import Trainer
from ..utils.general_utils import *
from ..utils.dist_utils import *
from ..utils import grad_clip_utils, elastic_utils
class BasicTrainer(Trainer):
"""
Trainer for basic training loop.
Args:
models (dict[str, nn.Module]): Models to train.
dataset (torch.utils.data.Dataset): Dataset.
output_dir (str): Output directory.
load_dir (str): Load directory.
step (int): Step to load.
batch_size (int): Batch size.
batch_size_per_gpu (int): Batch size per GPU. If specified, batch_size will be ignored.
batch_split (int): Split batch with gradient accumulation.
max_steps (int): Max steps.
optimizer (dict): Optimizer config.
lr_scheduler (dict): Learning rate scheduler config.
elastic (dict): Elastic memory management config.
grad_clip (float or dict): Gradient clip config.
ema_rate (float or list): Exponential moving average rates.
fp16_mode (str): FP16 mode.
- None: No FP16.
- 'inflat_all': Hold a inflated fp32 master param for all params.
- 'amp': Automatic mixed precision.
fp16_scale_growth (float): Scale growth for FP16 gradient backpropagation.
finetune_ckpt (dict): Finetune checkpoint.
log_param_stats (bool): Log parameter stats.
i_print (int): Print interval.
i_log (int): Log interval.
i_sample (int): Sample interval.
i_save (int): Save interval.
i_ddpcheck (int): DDP check interval.
"""
def __str__(self):
lines = []
lines.append(self.__class__.__name__)
lines.append(f' - Models:')
for name, model in self.models.items():
lines.append(f' - {name}: {model.__class__.__name__}')
lines.append(f' - Dataset: {indent(str(self.dataset), 2)}')
lines.append(f' - Dataloader:')
lines.append(f' - Sampler: {self.dataloader.sampler.__class__.__name__}')
lines.append(f' - Num workers: {self.dataloader.num_workers}')
lines.append(f' - Number of steps: {self.max_steps}')
lines.append(f' - Number of GPUs: {self.world_size}')
lines.append(f' - Batch size: {self.batch_size}')
lines.append(f' - Batch size per GPU: {self.batch_size_per_gpu}')
lines.append(f' - Batch split: {self.batch_split}')
lines.append(f' - Optimizer: {self.optimizer.__class__.__name__}')
lines.append(f' - Learning rate: {self.optimizer.param_groups[0]["lr"]}')
if self.lr_scheduler_config is not None:
lines.append(f' - LR scheduler: {self.lr_scheduler.__class__.__name__}')
if self.elastic_controller_config is not None:
lines.append(f' - Elastic memory: {indent(str(self.elastic_controller), 2)}')
if self.grad_clip is not None:
lines.append(f' - Gradient clip: {indent(str(self.grad_clip), 2)}')
lines.append(f' - EMA rate: {self.ema_rate}')
lines.append(f' - FP16 mode: {self.fp16_mode}')
return '\n'.join(lines)
def init_models_and_more(self, **kwargs):
"""
Initialize models and more.
"""
if self.world_size > 1:
# Prepare distributed data parallel
self.training_models = {
name: DDP(
model,
device_ids=[self.local_rank],
output_device=self.local_rank,
bucket_cap_mb=128,
find_unused_parameters=False
)
for name, model in self.models.items()
}
else:
self.training_models = self.models
# Build master params
self.model_params = sum(
[[p for p in model.parameters() if p.requires_grad] for model in self.models.values()]
, [])
if self.fp16_mode == 'amp':
self.master_params = self.model_params
self.scaler = torch.GradScaler() if self.fp16_mode == 'amp' else None
elif self.fp16_mode == 'inflat_all':
self.master_params = make_master_params(self.model_params)
self.fp16_scale_growth = self.fp16_scale_growth
self.log_scale = 20.0
elif self.fp16_mode is None:
self.master_params = self.model_params
else:
raise NotImplementedError(f'FP16 mode {self.fp16_mode} is not implemented.')
# Build EMA params
if self.is_master:
self.ema_params = [copy.deepcopy(self.master_params) for _ in self.ema_rate]
# Initialize optimizer
if hasattr(torch.optim, self.optimizer_config['name']):
self.optimizer = getattr(torch.optim, self.optimizer_config['name'])(self.master_params, **self.optimizer_config['args'])
else:
self.optimizer = globals()[self.optimizer_config['name']](self.master_params, **self.optimizer_config['args'])
# Initalize learning rate scheduler
if self.lr_scheduler_config is not None:
if hasattr(torch.optim.lr_scheduler, self.lr_scheduler_config['name']):
self.lr_scheduler = getattr(torch.optim.lr_scheduler, self.lr_scheduler_config['name'])(self.optimizer, **self.lr_scheduler_config['args'])
else:
self.lr_scheduler = globals()[self.lr_scheduler_config['name']](self.optimizer, **self.lr_scheduler_config['args'])
# Initialize elastic memory controller
if self.elastic_controller_config is not None:
assert any([isinstance(model, (elastic_utils.ElasticModule, elastic_utils.ElasticModuleMixin)) for model in self.models.values()]), \
'No elastic module found in models, please inherit from ElasticModule or ElasticModuleMixin'
self.elastic_controller = getattr(elastic_utils, self.elastic_controller_config['name'])(**self.elastic_controller_config['args'])
for model in self.models.values():
if isinstance(model, (elastic_utils.ElasticModule, elastic_utils.ElasticModuleMixin)):
model.register_memory_controller(self.elastic_controller)
# Initialize gradient clipper
if self.grad_clip is not None:
if isinstance(self.grad_clip, (float, int)):
self.grad_clip = float(self.grad_clip)
else:
self.grad_clip = getattr(grad_clip_utils, self.grad_clip['name'])(**self.grad_clip['args'])
def _master_params_to_state_dicts(self, master_params):
"""
Convert master params to dict of state_dicts.
"""
if self.fp16_mode == 'inflat_all':
master_params = unflatten_master_params(self.model_params, master_params)
state_dicts = {name: model.state_dict() for name, model in self.models.items()}
master_params_names = sum(
[[(name, n) for n, p in model.named_parameters() if p.requires_grad] for name, model in self.models.items()]
, [])
for i, (model_name, param_name) in enumerate(master_params_names):
state_dicts[model_name][param_name] = master_params[i]
return state_dicts
def _state_dicts_to_master_params(self, master_params, state_dicts):
"""
Convert a state_dict to master params.
"""
master_params_names = sum(
[[(name, n) for n, p in model.named_parameters() if p.requires_grad] for name, model in self.models.items()]
, [])
params = [state_dicts[name][param_name] for name, param_name in master_params_names]
if self.fp16_mode == 'inflat_all':
model_params_to_master_params(params, master_params)
else:
for i, param in enumerate(params):
master_params[i].data.copy_(param.data)
def load(self, load_dir, step=0):
"""
Load a checkpoint.
Should be called by all processes.
"""
if self.is_master:
print(f'\nLoading checkpoint from step {step}...', end='')
model_ckpts = {}
for name, model in self.models.items():
model_ckpt = torch.load(read_file_dist(os.path.join(load_dir, 'ckpts', f'{name}_step{step:07d}.pt')), map_location=self.device, weights_only=True)
model_ckpts[name] = model_ckpt
model.load_state_dict(model_ckpt)
if self.fp16_mode == 'inflat_all':
model.convert_to_fp16()
self._state_dicts_to_master_params(self.master_params, model_ckpts)
del model_ckpts
if self.is_master:
for i, ema_rate in enumerate(self.ema_rate):
ema_ckpts = {}
for name, model in self.models.items():
ema_ckpt = torch.load(os.path.join(load_dir, 'ckpts', f'{name}_ema{ema_rate}_step{step:07d}.pt'), map_location=self.device, weights_only=True)
ema_ckpts[name] = ema_ckpt
self._state_dicts_to_master_params(self.ema_params[i], ema_ckpts)
del ema_ckpts
misc_ckpt = torch.load(read_file_dist(os.path.join(load_dir, 'ckpts', f'misc_step{step:07d}.pt')), map_location=torch.device('cpu'), weights_only=False)
self.optimizer.load_state_dict(misc_ckpt['optimizer'])
self.step = misc_ckpt['step']
self.data_sampler.load_state_dict(misc_ckpt['data_sampler'])
if self.fp16_mode == 'amp':
self.scaler.load_state_dict(misc_ckpt['scaler'])
elif self.fp16_mode == 'inflat_all':
self.log_scale = misc_ckpt['log_scale']
if self.lr_scheduler_config is not None:
self.lr_scheduler.load_state_dict(misc_ckpt['lr_scheduler'])
if self.elastic_controller_config is not None:
self.elastic_controller.load_state_dict(misc_ckpt['elastic_controller'])
if self.grad_clip is not None and not isinstance(self.grad_clip, float):
self.grad_clip.load_state_dict(misc_ckpt['grad_clip'])
del misc_ckpt
if self.world_size > 1:
dist.barrier()
if self.is_master:
print(' Done.')
if self.world_size > 1:
self.check_ddp()
def save(self):
"""
Save a checkpoint.
Should be called only by the rank 0 process.
"""
assert self.is_master, 'save() should be called only by the rank 0 process.'
print(f'\nSaving checkpoint at step {self.step}...', end='')
model_ckpts = self._master_params_to_state_dicts(self.master_params)
for name, model_ckpt in model_ckpts.items():
torch.save(model_ckpt, os.path.join(self.output_dir, 'ckpts', f'{name}_step{self.step:07d}.pt'))
for i, ema_rate in enumerate(self.ema_rate):
ema_ckpts = self._master_params_to_state_dicts(self.ema_params[i])
for name, ema_ckpt in ema_ckpts.items():
torch.save(ema_ckpt, os.path.join(self.output_dir, 'ckpts', f'{name}_ema{ema_rate}_step{self.step:07d}.pt'))
misc_ckpt = {
'optimizer': self.optimizer.state_dict(),
'step': self.step,
'data_sampler': self.data_sampler.state_dict(),
}
if self.fp16_mode == 'amp':
misc_ckpt['scaler'] = self.scaler.state_dict()
elif self.fp16_mode == 'inflat_all':
misc_ckpt['log_scale'] = self.log_scale
if self.lr_scheduler_config is not None:
misc_ckpt['lr_scheduler'] = self.lr_scheduler.state_dict()
if self.elastic_controller_config is not None:
misc_ckpt['elastic_controller'] = self.elastic_controller.state_dict()
if self.grad_clip is not None and not isinstance(self.grad_clip, float):
misc_ckpt['grad_clip'] = self.grad_clip.state_dict()
torch.save(misc_ckpt, os.path.join(self.output_dir, 'ckpts', f'misc_step{self.step:07d}.pt'))
print(' Done.')
def finetune_from(self, finetune_ckpt):
"""
Finetune from a checkpoint.
Should be called by all processes.
"""
if self.is_master:
print('\nFinetuning from:')
for name, path in finetune_ckpt.items():
print(f' - {name}: {path}')
model_ckpts = {}
for name, model in self.models.items():
model_state_dict = model.state_dict()
if name in finetune_ckpt:
model_ckpt = torch.load(read_file_dist(finetune_ckpt[name]), map_location=self.device, weights_only=True)
for k, v in model_ckpt.items():
if model_ckpt[k].shape != model_state_dict[k].shape:
if self.is_master:
print(f'Warning: {k} shape mismatch, {model_ckpt[k].shape} vs {model_state_dict[k].shape}, skipped.')
model_ckpt[k] = model_state_dict[k]
model_ckpts[name] = model_ckpt
model.load_state_dict(model_ckpt)
if self.fp16_mode == 'inflat_all':
model.convert_to_fp16()
else:
if self.is_master:
print(f'Warning: {name} not found in finetune_ckpt, skipped.')
model_ckpts[name] = model_state_dict
self._state_dicts_to_master_params(self.master_params, model_ckpts)
del model_ckpts
if self.world_size > 1:
dist.barrier()
if self.is_master:
print('Done.')
if self.world_size > 1:
self.check_ddp()
def update_ema(self):
"""
Update exponential moving average.
Should only be called by the rank 0 process.
"""
assert self.is_master, 'update_ema() should be called only by the rank 0 process.'
for i, ema_rate in enumerate(self.ema_rate):
for master_param, ema_param in zip(self.master_params, self.ema_params[i]):
ema_param.detach().mul_(ema_rate).add_(master_param, alpha=1.0 - ema_rate)
def check_ddp(self):
"""
Check if DDP is working properly.
Should be called by all process.
"""
if self.is_master:
print('\nPerforming DDP check...')
if self.is_master:
print('Checking if parameters are consistent across processes...')
dist.barrier()
try:
for p in self.master_params:
# split to avoid OOM
for i in range(0, p.numel(), 10000000):
sub_size = min(10000000, p.numel() - i)
sub_p = p.detach().view(-1)[i:i+sub_size]
# gather from all processes
sub_p_gather = [torch.empty_like(sub_p) for _ in range(self.world_size)]
dist.all_gather(sub_p_gather, sub_p)
# check if equal
assert all([torch.equal(sub_p, sub_p_gather[i]) for i in range(self.world_size)]), 'parameters are not consistent across processes'
except AssertionError as e:
if self.is_master:
print(f'\n\033[91mError: {e}\033[0m')
print('DDP check failed.')
raise e
dist.barrier()
if self.is_master:
print('Done.')
def run_step(self, data_list):
"""
Run a training step.
"""
step_log = {'loss': {}, 'status': {}}
amp_context = partial(torch.autocast, device_type='cuda') if self.fp16_mode == 'amp' else nullcontext
elastic_controller_context = self.elastic_controller.record if self.elastic_controller_config is not None else nullcontext
# Train
losses = []
statuses = []
elastic_controller_logs = []
zero_grad(self.model_params)
for i, mb_data in enumerate(data_list):
## sync at the end of each batch split
sync_contexts = [self.training_models[name].no_sync for name in self.training_models] if i != len(data_list) - 1 and self.world_size > 1 else [nullcontext]
with nested_contexts(*sync_contexts), elastic_controller_context():
with amp_context():
loss, status = self.training_losses(**mb_data)
l = loss['loss'] / len(data_list)
## backward
if self.fp16_mode == 'amp':
self.scaler.scale(l).backward()
elif self.fp16_mode == 'inflat_all':
scaled_l = l * (2 ** self.log_scale)
scaled_l.backward()
else:
l.backward()
## log
losses.append(dict_foreach(loss, lambda x: x.item() if isinstance(x, torch.Tensor) else x))
statuses.append(dict_foreach(status, lambda x: x.item() if isinstance(x, torch.Tensor) else x))
if self.elastic_controller_config is not None:
elastic_controller_logs.append(self.elastic_controller.log())
## gradient clip
if self.grad_clip is not None:
if self.fp16_mode == 'amp':
self.scaler.unscale_(self.optimizer)
elif self.fp16_mode == 'inflat_all':
model_grads_to_master_grads(self.model_params, self.master_params)
self.master_params[0].grad.mul_(1.0 / (2 ** self.log_scale))
if isinstance(self.grad_clip, float):
grad_norm = torch.nn.utils.clip_grad_norm_(self.master_params, self.grad_clip)
else:
grad_norm = self.grad_clip(self.master_params)
if torch.isfinite(grad_norm):
statuses[-1]['grad_norm'] = grad_norm.item()
## step
if self.fp16_mode == 'amp':
prev_scale = self.scaler.get_scale()
self.scaler.step(self.optimizer)
self.scaler.update()
elif self.fp16_mode == 'inflat_all':
prev_scale = 2 ** self.log_scale
if not any(not p.grad.isfinite().all() for p in self.model_params):
if self.grad_clip is None:
model_grads_to_master_grads(self.model_params, self.master_params)
self.master_params[0].grad.mul_(1.0 / (2 ** self.log_scale))
self.optimizer.step()
master_params_to_model_params(self.model_params, self.master_params)
self.log_scale += self.fp16_scale_growth
else:
self.log_scale -= 1
else:
prev_scale = 1.0
if not any(not p.grad.isfinite().all() for p in self.model_params):
self.optimizer.step()
else:
print('\n\033[93mWarning: NaN detected in gradients. Skipping update.\033[0m')
## adjust learning rate
if self.lr_scheduler_config is not None:
statuses[-1]['lr'] = self.lr_scheduler.get_last_lr()[0]
self.lr_scheduler.step()
# Logs
step_log['loss'] = dict_reduce(losses, lambda x: np.mean(x))
step_log['status'] = dict_reduce(statuses, lambda x: np.mean(x), special_func={'min': lambda x: np.min(x), 'max': lambda x: np.max(x)})
if self.elastic_controller_config is not None:
step_log['elastic'] = dict_reduce(elastic_controller_logs, lambda x: np.mean(x))
if self.grad_clip is not None:
step_log['grad_clip'] = self.grad_clip if isinstance(self.grad_clip, float) else self.grad_clip.log()
# Check grad and norm of each param
if self.log_param_stats:
param_norms = {}
param_grads = {}
for name, param in self.backbone.named_parameters():
if param.requires_grad:
param_norms[name] = param.norm().item()
if param.grad is not None and torch.isfinite(param.grad).all():
param_grads[name] = param.grad.norm().item() / prev_scale
step_log['param_norms'] = param_norms
step_log['param_grads'] = param_grads
# Update exponential moving average
if self.is_master:
self.update_ema()
return step_log
|