Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from PIL import Image | |
import json | |
import numpy as np | |
import torch | |
import utils3d.torch | |
from ..modules.sparse.basic import SparseTensor | |
from .components import StandardDatasetBase | |
class SLat2Render(StandardDatasetBase): | |
""" | |
Dataset for Structured Latent and rendered images. | |
Args: | |
roots (str): paths to the dataset | |
image_size (int): size of the image | |
latent_model (str): latent model name | |
min_aesthetic_score (float): minimum aesthetic score | |
max_num_voxels (int): maximum number of voxels | |
""" | |
def __init__( | |
self, | |
roots: str, | |
image_size: int, | |
latent_model: str, | |
min_aesthetic_score: float = 5.0, | |
max_num_voxels: int = 32768, | |
): | |
self.image_size = image_size | |
self.latent_model = latent_model | |
self.min_aesthetic_score = min_aesthetic_score | |
self.max_num_voxels = max_num_voxels | |
self.value_range = (0, 1) | |
super().__init__(roots) | |
def filter_metadata(self, metadata): | |
stats = {} | |
metadata = metadata[metadata[f'latent_{self.latent_model}']] | |
stats['With latent'] = len(metadata) | |
metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score] | |
stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata) | |
metadata = metadata[metadata['num_voxels'] <= self.max_num_voxels] | |
stats[f'Num voxels <= {self.max_num_voxels}'] = len(metadata) | |
return metadata, stats | |
def _get_image(self, root, instance): | |
with open(os.path.join(root, 'renders', instance, 'transforms.json')) as f: | |
metadata = json.load(f) | |
n_views = len(metadata['frames']) | |
view = np.random.randint(n_views) | |
metadata = metadata['frames'][view] | |
fov = metadata['camera_angle_x'] | |
intrinsics = utils3d.torch.intrinsics_from_fov_xy(torch.tensor(fov), torch.tensor(fov)) | |
c2w = torch.tensor(metadata['transform_matrix']) | |
c2w[:3, 1:3] *= -1 | |
extrinsics = torch.inverse(c2w) | |
image_path = os.path.join(root, 'renders', instance, metadata['file_path']) | |
image = Image.open(image_path) | |
alpha = image.getchannel(3) | |
image = image.convert('RGB') | |
image = image.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS) | |
alpha = alpha.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS) | |
image = torch.tensor(np.array(image)).permute(2, 0, 1).float() / 255.0 | |
alpha = torch.tensor(np.array(alpha)).float() / 255.0 | |
return { | |
'image': image, | |
'alpha': alpha, | |
'extrinsics': extrinsics, | |
'intrinsics': intrinsics, | |
} | |
def _get_latent(self, root, instance): | |
data = np.load(os.path.join(root, 'latents', self.latent_model, f'{instance}.npz')) | |
coords = torch.tensor(data['coords']).int() | |
feats = torch.tensor(data['feats']).float() | |
return { | |
'coords': coords, | |
'feats': feats, | |
} | |
def visualize_sample(self, sample: dict): | |
return sample['image'] | |
def collate_fn(batch): | |
pack = {} | |
coords = [] | |
for i, b in enumerate(batch): | |
coords.append(torch.cat([torch.full((b['coords'].shape[0], 1), i, dtype=torch.int32), b['coords']], dim=-1)) | |
coords = torch.cat(coords) | |
feats = torch.cat([b['feats'] for b in batch]) | |
pack['latents'] = SparseTensor( | |
coords=coords, | |
feats=feats, | |
) | |
# collate other data | |
keys = [k for k in batch[0].keys() if k not in ['coords', 'feats']] | |
for k in keys: | |
if isinstance(batch[0][k], torch.Tensor): | |
pack[k] = torch.stack([b[k] for b in batch]) | |
elif isinstance(batch[0][k], list): | |
pack[k] = sum([b[k] for b in batch], []) | |
else: | |
pack[k] = [b[k] for b in batch] | |
return pack | |
def get_instance(self, root, instance): | |
image = self._get_image(root, instance) | |
latent = self._get_latent(root, instance) | |
return { | |
**image, | |
**latent, | |
} | |
class Slat2RenderGeo(SLat2Render): | |
def __init__( | |
self, | |
roots: str, | |
image_size: int, | |
latent_model: str, | |
min_aesthetic_score: float = 5.0, | |
max_num_voxels: int = 32768, | |
): | |
super().__init__( | |
roots, | |
image_size, | |
latent_model, | |
min_aesthetic_score, | |
max_num_voxels, | |
) | |
def _get_geo(self, root, instance): | |
verts, face = utils3d.io.read_ply(os.path.join(root, 'renders', instance, 'mesh.ply')) | |
mesh = { | |
"vertices" : torch.from_numpy(verts), | |
"faces" : torch.from_numpy(face), | |
} | |
return { | |
"mesh" : mesh, | |
} | |
def get_instance(self, root, instance): | |
image = self._get_image(root, instance) | |
latent = self._get_latent(root, instance) | |
geo = self._get_geo(root, instance) | |
return { | |
**image, | |
**latent, | |
**geo, | |
} | |