TRELLIS-Texto3D / trellis /datasets /structured_latent2render.py
cavargas10's picture
Upload 288 files
178f950 verified
import os
from PIL import Image
import json
import numpy as np
import torch
import utils3d.torch
from ..modules.sparse.basic import SparseTensor
from .components import StandardDatasetBase
class SLat2Render(StandardDatasetBase):
"""
Dataset for Structured Latent and rendered images.
Args:
roots (str): paths to the dataset
image_size (int): size of the image
latent_model (str): latent model name
min_aesthetic_score (float): minimum aesthetic score
max_num_voxels (int): maximum number of voxels
"""
def __init__(
self,
roots: str,
image_size: int,
latent_model: str,
min_aesthetic_score: float = 5.0,
max_num_voxels: int = 32768,
):
self.image_size = image_size
self.latent_model = latent_model
self.min_aesthetic_score = min_aesthetic_score
self.max_num_voxels = max_num_voxels
self.value_range = (0, 1)
super().__init__(roots)
def filter_metadata(self, metadata):
stats = {}
metadata = metadata[metadata[f'latent_{self.latent_model}']]
stats['With latent'] = len(metadata)
metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score]
stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata)
metadata = metadata[metadata['num_voxels'] <= self.max_num_voxels]
stats[f'Num voxels <= {self.max_num_voxels}'] = len(metadata)
return metadata, stats
def _get_image(self, root, instance):
with open(os.path.join(root, 'renders', instance, 'transforms.json')) as f:
metadata = json.load(f)
n_views = len(metadata['frames'])
view = np.random.randint(n_views)
metadata = metadata['frames'][view]
fov = metadata['camera_angle_x']
intrinsics = utils3d.torch.intrinsics_from_fov_xy(torch.tensor(fov), torch.tensor(fov))
c2w = torch.tensor(metadata['transform_matrix'])
c2w[:3, 1:3] *= -1
extrinsics = torch.inverse(c2w)
image_path = os.path.join(root, 'renders', instance, metadata['file_path'])
image = Image.open(image_path)
alpha = image.getchannel(3)
image = image.convert('RGB')
image = image.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS)
alpha = alpha.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS)
image = torch.tensor(np.array(image)).permute(2, 0, 1).float() / 255.0
alpha = torch.tensor(np.array(alpha)).float() / 255.0
return {
'image': image,
'alpha': alpha,
'extrinsics': extrinsics,
'intrinsics': intrinsics,
}
def _get_latent(self, root, instance):
data = np.load(os.path.join(root, 'latents', self.latent_model, f'{instance}.npz'))
coords = torch.tensor(data['coords']).int()
feats = torch.tensor(data['feats']).float()
return {
'coords': coords,
'feats': feats,
}
@torch.no_grad()
def visualize_sample(self, sample: dict):
return sample['image']
@staticmethod
def collate_fn(batch):
pack = {}
coords = []
for i, b in enumerate(batch):
coords.append(torch.cat([torch.full((b['coords'].shape[0], 1), i, dtype=torch.int32), b['coords']], dim=-1))
coords = torch.cat(coords)
feats = torch.cat([b['feats'] for b in batch])
pack['latents'] = SparseTensor(
coords=coords,
feats=feats,
)
# collate other data
keys = [k for k in batch[0].keys() if k not in ['coords', 'feats']]
for k in keys:
if isinstance(batch[0][k], torch.Tensor):
pack[k] = torch.stack([b[k] for b in batch])
elif isinstance(batch[0][k], list):
pack[k] = sum([b[k] for b in batch], [])
else:
pack[k] = [b[k] for b in batch]
return pack
def get_instance(self, root, instance):
image = self._get_image(root, instance)
latent = self._get_latent(root, instance)
return {
**image,
**latent,
}
class Slat2RenderGeo(SLat2Render):
def __init__(
self,
roots: str,
image_size: int,
latent_model: str,
min_aesthetic_score: float = 5.0,
max_num_voxels: int = 32768,
):
super().__init__(
roots,
image_size,
latent_model,
min_aesthetic_score,
max_num_voxels,
)
def _get_geo(self, root, instance):
verts, face = utils3d.io.read_ply(os.path.join(root, 'renders', instance, 'mesh.ply'))
mesh = {
"vertices" : torch.from_numpy(verts),
"faces" : torch.from_numpy(face),
}
return {
"mesh" : mesh,
}
def get_instance(self, root, instance):
image = self._get_image(root, instance)
latent = self._get_latent(root, instance)
geo = self._get_geo(root, instance)
return {
**image,
**latent,
**geo,
}