Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,475 Bytes
178f950 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import os
from PIL import Image
import json
import numpy as np
import torch
import utils3d.torch
from ..modules.sparse.basic import SparseTensor
from .components import StandardDatasetBase
class SLat2Render(StandardDatasetBase):
"""
Dataset for Structured Latent and rendered images.
Args:
roots (str): paths to the dataset
image_size (int): size of the image
latent_model (str): latent model name
min_aesthetic_score (float): minimum aesthetic score
max_num_voxels (int): maximum number of voxels
"""
def __init__(
self,
roots: str,
image_size: int,
latent_model: str,
min_aesthetic_score: float = 5.0,
max_num_voxels: int = 32768,
):
self.image_size = image_size
self.latent_model = latent_model
self.min_aesthetic_score = min_aesthetic_score
self.max_num_voxels = max_num_voxels
self.value_range = (0, 1)
super().__init__(roots)
def filter_metadata(self, metadata):
stats = {}
metadata = metadata[metadata[f'latent_{self.latent_model}']]
stats['With latent'] = len(metadata)
metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score]
stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata)
metadata = metadata[metadata['num_voxels'] <= self.max_num_voxels]
stats[f'Num voxels <= {self.max_num_voxels}'] = len(metadata)
return metadata, stats
def _get_image(self, root, instance):
with open(os.path.join(root, 'renders', instance, 'transforms.json')) as f:
metadata = json.load(f)
n_views = len(metadata['frames'])
view = np.random.randint(n_views)
metadata = metadata['frames'][view]
fov = metadata['camera_angle_x']
intrinsics = utils3d.torch.intrinsics_from_fov_xy(torch.tensor(fov), torch.tensor(fov))
c2w = torch.tensor(metadata['transform_matrix'])
c2w[:3, 1:3] *= -1
extrinsics = torch.inverse(c2w)
image_path = os.path.join(root, 'renders', instance, metadata['file_path'])
image = Image.open(image_path)
alpha = image.getchannel(3)
image = image.convert('RGB')
image = image.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS)
alpha = alpha.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS)
image = torch.tensor(np.array(image)).permute(2, 0, 1).float() / 255.0
alpha = torch.tensor(np.array(alpha)).float() / 255.0
return {
'image': image,
'alpha': alpha,
'extrinsics': extrinsics,
'intrinsics': intrinsics,
}
def _get_latent(self, root, instance):
data = np.load(os.path.join(root, 'latents', self.latent_model, f'{instance}.npz'))
coords = torch.tensor(data['coords']).int()
feats = torch.tensor(data['feats']).float()
return {
'coords': coords,
'feats': feats,
}
@torch.no_grad()
def visualize_sample(self, sample: dict):
return sample['image']
@staticmethod
def collate_fn(batch):
pack = {}
coords = []
for i, b in enumerate(batch):
coords.append(torch.cat([torch.full((b['coords'].shape[0], 1), i, dtype=torch.int32), b['coords']], dim=-1))
coords = torch.cat(coords)
feats = torch.cat([b['feats'] for b in batch])
pack['latents'] = SparseTensor(
coords=coords,
feats=feats,
)
# collate other data
keys = [k for k in batch[0].keys() if k not in ['coords', 'feats']]
for k in keys:
if isinstance(batch[0][k], torch.Tensor):
pack[k] = torch.stack([b[k] for b in batch])
elif isinstance(batch[0][k], list):
pack[k] = sum([b[k] for b in batch], [])
else:
pack[k] = [b[k] for b in batch]
return pack
def get_instance(self, root, instance):
image = self._get_image(root, instance)
latent = self._get_latent(root, instance)
return {
**image,
**latent,
}
class Slat2RenderGeo(SLat2Render):
def __init__(
self,
roots: str,
image_size: int,
latent_model: str,
min_aesthetic_score: float = 5.0,
max_num_voxels: int = 32768,
):
super().__init__(
roots,
image_size,
latent_model,
min_aesthetic_score,
max_num_voxels,
)
def _get_geo(self, root, instance):
verts, face = utils3d.io.read_ply(os.path.join(root, 'renders', instance, 'mesh.ply'))
mesh = {
"vertices" : torch.from_numpy(verts),
"faces" : torch.from_numpy(face),
}
return {
"mesh" : mesh,
}
def get_instance(self, root, instance):
image = self._get_image(root, instance)
latent = self._get_latent(root, instance)
geo = self._get_geo(root, instance)
return {
**image,
**latent,
**geo,
}
|