TRELLIS-Texto3D / trellis /datasets /sparse_structure_latent.py
cavargas10's picture
Upload 288 files
178f950 verified
import os
import json
from typing import *
import numpy as np
import torch
import utils3d
from ..representations.octree import DfsOctree as Octree
from ..renderers import OctreeRenderer
from .components import StandardDatasetBase, TextConditionedMixin, ImageConditionedMixin
from .. import models
from ..utils.dist_utils import read_file_dist
class SparseStructureLatentVisMixin:
def __init__(
self,
*args,
pretrained_ss_dec: str = 'JeffreyXiang/TRELLIS-image-large/ckpts/ss_dec_conv3d_16l8_fp16',
ss_dec_path: Optional[str] = None,
ss_dec_ckpt: Optional[str] = None,
**kwargs
):
super().__init__(*args, **kwargs)
self.ss_dec = None
self.pretrained_ss_dec = pretrained_ss_dec
self.ss_dec_path = ss_dec_path
self.ss_dec_ckpt = ss_dec_ckpt
def _loading_ss_dec(self):
if self.ss_dec is not None:
return
if self.ss_dec_path is not None:
cfg = json.load(open(os.path.join(self.ss_dec_path, 'config.json'), 'r'))
decoder = getattr(models, cfg['models']['decoder']['name'])(**cfg['models']['decoder']['args'])
ckpt_path = os.path.join(self.ss_dec_path, 'ckpts', f'decoder_{self.ss_dec_ckpt}.pt')
decoder.load_state_dict(torch.load(read_file_dist(ckpt_path), map_location='cpu', weights_only=True))
else:
decoder = models.from_pretrained(self.pretrained_ss_dec)
self.ss_dec = decoder.cuda().eval()
def _delete_ss_dec(self):
del self.ss_dec
self.ss_dec = None
@torch.no_grad()
def decode_latent(self, z, batch_size=4):
self._loading_ss_dec()
ss = []
if self.normalization is not None:
z = z * self.std.to(z.device) + self.mean.to(z.device)
for i in range(0, z.shape[0], batch_size):
ss.append(self.ss_dec(z[i:i+batch_size]))
ss = torch.cat(ss, dim=0)
self._delete_ss_dec()
return ss
@torch.no_grad()
def visualize_sample(self, x_0: Union[torch.Tensor, dict]):
x_0 = x_0 if isinstance(x_0, torch.Tensor) else x_0['x_0']
x_0 = self.decode_latent(x_0.cuda())
renderer = OctreeRenderer()
renderer.rendering_options.resolution = 512
renderer.rendering_options.near = 0.8
renderer.rendering_options.far = 1.6
renderer.rendering_options.bg_color = (0, 0, 0)
renderer.rendering_options.ssaa = 4
renderer.pipe.primitive = 'voxel'
# Build camera
yaws = [0, np.pi / 2, np.pi, 3 * np.pi / 2]
yaws_offset = np.random.uniform(-np.pi / 4, np.pi / 4)
yaws = [y + yaws_offset for y in yaws]
pitch = [np.random.uniform(-np.pi / 4, np.pi / 4) for _ in range(4)]
exts = []
ints = []
for yaw, pitch in zip(yaws, pitch):
orig = torch.tensor([
np.sin(yaw) * np.cos(pitch),
np.cos(yaw) * np.cos(pitch),
np.sin(pitch),
]).float().cuda() * 2
fov = torch.deg2rad(torch.tensor(30)).cuda()
extrinsics = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda())
intrinsics = utils3d.torch.intrinsics_from_fov_xy(fov, fov)
exts.append(extrinsics)
ints.append(intrinsics)
images = []
# Build each representation
x_0 = x_0.cuda()
for i in range(x_0.shape[0]):
representation = Octree(
depth=10,
aabb=[-0.5, -0.5, -0.5, 1, 1, 1],
device='cuda',
primitive='voxel',
sh_degree=0,
primitive_config={'solid': True},
)
coords = torch.nonzero(x_0[i, 0] > 0, as_tuple=False)
resolution = x_0.shape[-1]
representation.position = coords.float() / resolution
representation.depth = torch.full((representation.position.shape[0], 1), int(np.log2(resolution)), dtype=torch.uint8, device='cuda')
image = torch.zeros(3, 1024, 1024).cuda()
tile = [2, 2]
for j, (ext, intr) in enumerate(zip(exts, ints)):
res = renderer.render(representation, ext, intr, colors_overwrite=representation.position)
image[:, 512 * (j // tile[1]):512 * (j // tile[1] + 1), 512 * (j % tile[1]):512 * (j % tile[1] + 1)] = res['color']
images.append(image)
return torch.stack(images)
class SparseStructureLatent(SparseStructureLatentVisMixin, StandardDatasetBase):
"""
Sparse structure latent dataset
Args:
roots (str): path to the dataset
latent_model (str): name of the latent model
min_aesthetic_score (float): minimum aesthetic score
normalization (dict): normalization stats
pretrained_ss_dec (str): name of the pretrained sparse structure decoder
ss_dec_path (str): path to the sparse structure decoder, if given, will override the pretrained_ss_dec
ss_dec_ckpt (str): name of the sparse structure decoder checkpoint
"""
def __init__(self,
roots: str,
*,
latent_model: str,
min_aesthetic_score: float = 5.0,
normalization: Optional[dict] = None,
pretrained_ss_dec: str = 'JeffreyXiang/TRELLIS-image-large/ckpts/ss_dec_conv3d_16l8_fp16',
ss_dec_path: Optional[str] = None,
ss_dec_ckpt: Optional[str] = None,
):
self.latent_model = latent_model
self.min_aesthetic_score = min_aesthetic_score
self.normalization = normalization
self.value_range = (0, 1)
super().__init__(
roots,
pretrained_ss_dec=pretrained_ss_dec,
ss_dec_path=ss_dec_path,
ss_dec_ckpt=ss_dec_ckpt,
)
if self.normalization is not None:
self.mean = torch.tensor(self.normalization['mean']).reshape(-1, 1, 1, 1)
self.std = torch.tensor(self.normalization['std']).reshape(-1, 1, 1, 1)
def filter_metadata(self, metadata):
stats = {}
metadata = metadata[metadata[f'ss_latent_{self.latent_model}']]
stats['With sparse structure latents'] = len(metadata)
metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score]
stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata)
return metadata, stats
def get_instance(self, root, instance):
latent = np.load(os.path.join(root, 'ss_latents', self.latent_model, f'{instance}.npz'))
z = torch.tensor(latent['mean']).float()
if self.normalization is not None:
z = (z - self.mean) / self.std
pack = {
'x_0': z,
}
return pack
class TextConditionedSparseStructureLatent(TextConditionedMixin, SparseStructureLatent):
"""
Text-conditioned sparse structure dataset
"""
pass
class ImageConditionedSparseStructureLatent(ImageConditionedMixin, SparseStructureLatent):
"""
Image-conditioned sparse structure dataset
"""
pass