Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,445 Bytes
178f950 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
import json
from typing import *
import numpy as np
import torch
import utils3d
from ..representations.octree import DfsOctree as Octree
from ..renderers import OctreeRenderer
from .components import StandardDatasetBase, TextConditionedMixin, ImageConditionedMixin
from .. import models
from ..utils.dist_utils import read_file_dist
class SparseStructureLatentVisMixin:
def __init__(
self,
*args,
pretrained_ss_dec: str = 'JeffreyXiang/TRELLIS-image-large/ckpts/ss_dec_conv3d_16l8_fp16',
ss_dec_path: Optional[str] = None,
ss_dec_ckpt: Optional[str] = None,
**kwargs
):
super().__init__(*args, **kwargs)
self.ss_dec = None
self.pretrained_ss_dec = pretrained_ss_dec
self.ss_dec_path = ss_dec_path
self.ss_dec_ckpt = ss_dec_ckpt
def _loading_ss_dec(self):
if self.ss_dec is not None:
return
if self.ss_dec_path is not None:
cfg = json.load(open(os.path.join(self.ss_dec_path, 'config.json'), 'r'))
decoder = getattr(models, cfg['models']['decoder']['name'])(**cfg['models']['decoder']['args'])
ckpt_path = os.path.join(self.ss_dec_path, 'ckpts', f'decoder_{self.ss_dec_ckpt}.pt')
decoder.load_state_dict(torch.load(read_file_dist(ckpt_path), map_location='cpu', weights_only=True))
else:
decoder = models.from_pretrained(self.pretrained_ss_dec)
self.ss_dec = decoder.cuda().eval()
def _delete_ss_dec(self):
del self.ss_dec
self.ss_dec = None
@torch.no_grad()
def decode_latent(self, z, batch_size=4):
self._loading_ss_dec()
ss = []
if self.normalization is not None:
z = z * self.std.to(z.device) + self.mean.to(z.device)
for i in range(0, z.shape[0], batch_size):
ss.append(self.ss_dec(z[i:i+batch_size]))
ss = torch.cat(ss, dim=0)
self._delete_ss_dec()
return ss
@torch.no_grad()
def visualize_sample(self, x_0: Union[torch.Tensor, dict]):
x_0 = x_0 if isinstance(x_0, torch.Tensor) else x_0['x_0']
x_0 = self.decode_latent(x_0.cuda())
renderer = OctreeRenderer()
renderer.rendering_options.resolution = 512
renderer.rendering_options.near = 0.8
renderer.rendering_options.far = 1.6
renderer.rendering_options.bg_color = (0, 0, 0)
renderer.rendering_options.ssaa = 4
renderer.pipe.primitive = 'voxel'
# Build camera
yaws = [0, np.pi / 2, np.pi, 3 * np.pi / 2]
yaws_offset = np.random.uniform(-np.pi / 4, np.pi / 4)
yaws = [y + yaws_offset for y in yaws]
pitch = [np.random.uniform(-np.pi / 4, np.pi / 4) for _ in range(4)]
exts = []
ints = []
for yaw, pitch in zip(yaws, pitch):
orig = torch.tensor([
np.sin(yaw) * np.cos(pitch),
np.cos(yaw) * np.cos(pitch),
np.sin(pitch),
]).float().cuda() * 2
fov = torch.deg2rad(torch.tensor(30)).cuda()
extrinsics = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda())
intrinsics = utils3d.torch.intrinsics_from_fov_xy(fov, fov)
exts.append(extrinsics)
ints.append(intrinsics)
images = []
# Build each representation
x_0 = x_0.cuda()
for i in range(x_0.shape[0]):
representation = Octree(
depth=10,
aabb=[-0.5, -0.5, -0.5, 1, 1, 1],
device='cuda',
primitive='voxel',
sh_degree=0,
primitive_config={'solid': True},
)
coords = torch.nonzero(x_0[i, 0] > 0, as_tuple=False)
resolution = x_0.shape[-1]
representation.position = coords.float() / resolution
representation.depth = torch.full((representation.position.shape[0], 1), int(np.log2(resolution)), dtype=torch.uint8, device='cuda')
image = torch.zeros(3, 1024, 1024).cuda()
tile = [2, 2]
for j, (ext, intr) in enumerate(zip(exts, ints)):
res = renderer.render(representation, ext, intr, colors_overwrite=representation.position)
image[:, 512 * (j // tile[1]):512 * (j // tile[1] + 1), 512 * (j % tile[1]):512 * (j % tile[1] + 1)] = res['color']
images.append(image)
return torch.stack(images)
class SparseStructureLatent(SparseStructureLatentVisMixin, StandardDatasetBase):
"""
Sparse structure latent dataset
Args:
roots (str): path to the dataset
latent_model (str): name of the latent model
min_aesthetic_score (float): minimum aesthetic score
normalization (dict): normalization stats
pretrained_ss_dec (str): name of the pretrained sparse structure decoder
ss_dec_path (str): path to the sparse structure decoder, if given, will override the pretrained_ss_dec
ss_dec_ckpt (str): name of the sparse structure decoder checkpoint
"""
def __init__(self,
roots: str,
*,
latent_model: str,
min_aesthetic_score: float = 5.0,
normalization: Optional[dict] = None,
pretrained_ss_dec: str = 'JeffreyXiang/TRELLIS-image-large/ckpts/ss_dec_conv3d_16l8_fp16',
ss_dec_path: Optional[str] = None,
ss_dec_ckpt: Optional[str] = None,
):
self.latent_model = latent_model
self.min_aesthetic_score = min_aesthetic_score
self.normalization = normalization
self.value_range = (0, 1)
super().__init__(
roots,
pretrained_ss_dec=pretrained_ss_dec,
ss_dec_path=ss_dec_path,
ss_dec_ckpt=ss_dec_ckpt,
)
if self.normalization is not None:
self.mean = torch.tensor(self.normalization['mean']).reshape(-1, 1, 1, 1)
self.std = torch.tensor(self.normalization['std']).reshape(-1, 1, 1, 1)
def filter_metadata(self, metadata):
stats = {}
metadata = metadata[metadata[f'ss_latent_{self.latent_model}']]
stats['With sparse structure latents'] = len(metadata)
metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score]
stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata)
return metadata, stats
def get_instance(self, root, instance):
latent = np.load(os.path.join(root, 'ss_latents', self.latent_model, f'{instance}.npz'))
z = torch.tensor(latent['mean']).float()
if self.normalization is not None:
z = (z - self.mean) / self.std
pack = {
'x_0': z,
}
return pack
class TextConditionedSparseStructureLatent(TextConditionedMixin, SparseStructureLatent):
"""
Text-conditioned sparse structure dataset
"""
pass
class ImageConditionedSparseStructureLatent(ImageConditionedMixin, SparseStructureLatent):
"""
Image-conditioned sparse structure dataset
"""
pass
|