File size: 7,445 Bytes
178f950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import json
from typing import *
import numpy as np
import torch
import utils3d
from ..representations.octree import DfsOctree as Octree
from ..renderers import OctreeRenderer
from .components import StandardDatasetBase, TextConditionedMixin, ImageConditionedMixin
from .. import models
from ..utils.dist_utils import read_file_dist


class SparseStructureLatentVisMixin:
    def __init__(

        self,

        *args,

        pretrained_ss_dec: str = 'JeffreyXiang/TRELLIS-image-large/ckpts/ss_dec_conv3d_16l8_fp16',

        ss_dec_path: Optional[str] = None,

        ss_dec_ckpt: Optional[str] = None,

        **kwargs

    ):
        super().__init__(*args, **kwargs)
        self.ss_dec = None
        self.pretrained_ss_dec = pretrained_ss_dec
        self.ss_dec_path = ss_dec_path
        self.ss_dec_ckpt = ss_dec_ckpt
        
    def _loading_ss_dec(self):
        if self.ss_dec is not None:
            return
        if self.ss_dec_path is not None:
            cfg = json.load(open(os.path.join(self.ss_dec_path, 'config.json'), 'r'))
            decoder = getattr(models, cfg['models']['decoder']['name'])(**cfg['models']['decoder']['args'])
            ckpt_path = os.path.join(self.ss_dec_path, 'ckpts', f'decoder_{self.ss_dec_ckpt}.pt')
            decoder.load_state_dict(torch.load(read_file_dist(ckpt_path), map_location='cpu', weights_only=True))
        else:
            decoder = models.from_pretrained(self.pretrained_ss_dec)
        self.ss_dec = decoder.cuda().eval()

    def _delete_ss_dec(self):
        del self.ss_dec
        self.ss_dec = None

    @torch.no_grad()
    def decode_latent(self, z, batch_size=4):
        self._loading_ss_dec()
        ss = []
        if self.normalization is not None:
            z = z * self.std.to(z.device) + self.mean.to(z.device)
        for i in range(0, z.shape[0], batch_size):
            ss.append(self.ss_dec(z[i:i+batch_size]))
        ss = torch.cat(ss, dim=0)
        self._delete_ss_dec()
        return ss

    @torch.no_grad()
    def visualize_sample(self, x_0: Union[torch.Tensor, dict]):
        x_0 = x_0 if isinstance(x_0, torch.Tensor) else x_0['x_0']
        x_0 = self.decode_latent(x_0.cuda())
        
        renderer = OctreeRenderer()
        renderer.rendering_options.resolution = 512
        renderer.rendering_options.near = 0.8
        renderer.rendering_options.far = 1.6
        renderer.rendering_options.bg_color = (0, 0, 0)
        renderer.rendering_options.ssaa = 4
        renderer.pipe.primitive = 'voxel'
        
        # Build camera
        yaws = [0, np.pi / 2, np.pi, 3 * np.pi / 2]
        yaws_offset = np.random.uniform(-np.pi / 4, np.pi / 4)
        yaws = [y + yaws_offset for y in yaws]
        pitch = [np.random.uniform(-np.pi / 4, np.pi / 4) for _ in range(4)]

        exts = []
        ints = []
        for yaw, pitch in zip(yaws, pitch):
            orig = torch.tensor([
                np.sin(yaw) * np.cos(pitch),
                np.cos(yaw) * np.cos(pitch),
                np.sin(pitch),
            ]).float().cuda() * 2
            fov = torch.deg2rad(torch.tensor(30)).cuda()
            extrinsics = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda())
            intrinsics = utils3d.torch.intrinsics_from_fov_xy(fov, fov)
            exts.append(extrinsics)
            ints.append(intrinsics)

        images = []
        
        # Build each representation
        x_0 = x_0.cuda()
        for i in range(x_0.shape[0]):
            representation = Octree(
                depth=10,
                aabb=[-0.5, -0.5, -0.5, 1, 1, 1],
                device='cuda',
                primitive='voxel',
                sh_degree=0,
                primitive_config={'solid': True},
            )
            coords = torch.nonzero(x_0[i, 0] > 0, as_tuple=False)
            resolution = x_0.shape[-1]
            representation.position = coords.float() / resolution
            representation.depth = torch.full((representation.position.shape[0], 1), int(np.log2(resolution)), dtype=torch.uint8, device='cuda')

            image = torch.zeros(3, 1024, 1024).cuda()
            tile = [2, 2]
            for j, (ext, intr) in enumerate(zip(exts, ints)):
                res = renderer.render(representation, ext, intr, colors_overwrite=representation.position)
                image[:, 512 * (j // tile[1]):512 * (j // tile[1] + 1), 512 * (j % tile[1]):512 * (j % tile[1] + 1)] = res['color']
            images.append(image)
            
        return torch.stack(images)
       

class SparseStructureLatent(SparseStructureLatentVisMixin, StandardDatasetBase):
    """

    Sparse structure latent dataset

    

    Args:

        roots (str): path to the dataset

        latent_model (str): name of the latent model

        min_aesthetic_score (float): minimum aesthetic score

        normalization (dict): normalization stats

        pretrained_ss_dec (str): name of the pretrained sparse structure decoder

        ss_dec_path (str): path to the sparse structure decoder, if given, will override the pretrained_ss_dec

        ss_dec_ckpt (str): name of the sparse structure decoder checkpoint

    """
    def __init__(self,

        roots: str,

        *,

        latent_model: str,

        min_aesthetic_score: float = 5.0,

        normalization: Optional[dict] = None,

        pretrained_ss_dec: str = 'JeffreyXiang/TRELLIS-image-large/ckpts/ss_dec_conv3d_16l8_fp16',

        ss_dec_path: Optional[str] = None,

        ss_dec_ckpt: Optional[str] = None,

    ):
        self.latent_model = latent_model
        self.min_aesthetic_score = min_aesthetic_score
        self.normalization = normalization
        self.value_range = (0, 1)
        
        super().__init__(
            roots,
            pretrained_ss_dec=pretrained_ss_dec,
            ss_dec_path=ss_dec_path,
            ss_dec_ckpt=ss_dec_ckpt,
        )
        
        if self.normalization is not None:
            self.mean = torch.tensor(self.normalization['mean']).reshape(-1, 1, 1, 1)
            self.std = torch.tensor(self.normalization['std']).reshape(-1, 1, 1, 1)
  
    def filter_metadata(self, metadata):
        stats = {}
        metadata = metadata[metadata[f'ss_latent_{self.latent_model}']]
        stats['With sparse structure latents'] = len(metadata)
        metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score]
        stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata)
        return metadata, stats
                
    def get_instance(self, root, instance):
        latent = np.load(os.path.join(root, 'ss_latents', self.latent_model, f'{instance}.npz'))
        z = torch.tensor(latent['mean']).float()
        if self.normalization is not None:
            z = (z - self.mean) / self.std

        pack = {
            'x_0': z,
        }
        return pack
    

class TextConditionedSparseStructureLatent(TextConditionedMixin, SparseStructureLatent):
    """

    Text-conditioned sparse structure dataset

    """
    pass


class ImageConditionedSparseStructureLatent(ImageConditionedMixin, SparseStructureLatent):
    """

    Image-conditioned sparse structure dataset

    """
    pass