Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from PIL import Image | |
import json | |
import numpy as np | |
import pandas as pd | |
import torch | |
import utils3d.torch | |
from ..modules.sparse.basic import SparseTensor | |
from .components import StandardDatasetBase | |
class SparseFeat2Render(StandardDatasetBase): | |
""" | |
SparseFeat2Render dataset. | |
Args: | |
roots (str): paths to the dataset | |
image_size (int): size of the image | |
model (str): model name | |
resolution (int): resolution of the data | |
min_aesthetic_score (float): minimum aesthetic score | |
max_num_voxels (int): maximum number of voxels | |
""" | |
def __init__( | |
self, | |
roots: str, | |
image_size: int, | |
model: str = 'dinov2_vitl14_reg', | |
resolution: int = 64, | |
min_aesthetic_score: float = 5.0, | |
max_num_voxels: int = 32768, | |
): | |
self.image_size = image_size | |
self.model = model | |
self.resolution = resolution | |
self.min_aesthetic_score = min_aesthetic_score | |
self.max_num_voxels = max_num_voxels | |
self.value_range = (0, 1) | |
super().__init__(roots) | |
def filter_metadata(self, metadata): | |
stats = {} | |
metadata = metadata[metadata[f'feature_{self.model}']] | |
stats['With features'] = len(metadata) | |
metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score] | |
stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata) | |
metadata = metadata[metadata['num_voxels'] <= self.max_num_voxels] | |
stats[f'Num voxels <= {self.max_num_voxels}'] = len(metadata) | |
return metadata, stats | |
def _get_image(self, root, instance): | |
with open(os.path.join(root, 'renders', instance, 'transforms.json')) as f: | |
metadata = json.load(f) | |
n_views = len(metadata['frames']) | |
view = np.random.randint(n_views) | |
metadata = metadata['frames'][view] | |
fov = metadata['camera_angle_x'] | |
intrinsics = utils3d.torch.intrinsics_from_fov_xy(torch.tensor(fov), torch.tensor(fov)) | |
c2w = torch.tensor(metadata['transform_matrix']) | |
c2w[:3, 1:3] *= -1 | |
extrinsics = torch.inverse(c2w) | |
image_path = os.path.join(root, 'renders', instance, metadata['file_path']) | |
image = Image.open(image_path) | |
alpha = image.getchannel(3) | |
image = image.convert('RGB') | |
image = image.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS) | |
alpha = alpha.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS) | |
image = torch.tensor(np.array(image)).permute(2, 0, 1).float() / 255.0 | |
alpha = torch.tensor(np.array(alpha)).float() / 255.0 | |
return { | |
'image': image, | |
'alpha': alpha, | |
'extrinsics': extrinsics, | |
'intrinsics': intrinsics, | |
} | |
def _get_feat(self, root, instance): | |
DATA_RESOLUTION = 64 | |
feats_path = os.path.join(root, 'features', self.model, f'{instance}.npz') | |
feats = np.load(feats_path, allow_pickle=True) | |
coords = torch.tensor(feats['indices']).int() | |
feats = torch.tensor(feats['patchtokens']).float() | |
if self.resolution != DATA_RESOLUTION: | |
factor = DATA_RESOLUTION // self.resolution | |
coords = coords // factor | |
coords, idx = coords.unique(return_inverse=True, dim=0) | |
feats = torch.scatter_reduce( | |
torch.zeros(coords.shape[0], feats.shape[1], device=feats.device), | |
dim=0, | |
index=idx.unsqueeze(-1).expand(-1, feats.shape[1]), | |
src=feats, | |
reduce='mean' | |
) | |
return { | |
'coords': coords, | |
'feats': feats, | |
} | |
def visualize_sample(self, sample: dict): | |
return sample['image'] | |
def collate_fn(batch): | |
pack = {} | |
coords = [] | |
for i, b in enumerate(batch): | |
coords.append(torch.cat([torch.full((b['coords'].shape[0], 1), i, dtype=torch.int32), b['coords']], dim=-1)) | |
coords = torch.cat(coords) | |
feats = torch.cat([b['feats'] for b in batch]) | |
pack['feats'] = SparseTensor( | |
coords=coords, | |
feats=feats, | |
) | |
pack['image'] = torch.stack([b['image'] for b in batch]) | |
pack['alpha'] = torch.stack([b['alpha'] for b in batch]) | |
pack['extrinsics'] = torch.stack([b['extrinsics'] for b in batch]) | |
pack['intrinsics'] = torch.stack([b['intrinsics'] for b in batch]) | |
return pack | |
def get_instance(self, root, instance): | |
image = self._get_image(root, instance) | |
feat = self._get_feat(root, instance) | |
return { | |
**image, | |
**feat, | |
} | |