import os from PIL import Image import json import numpy as np import pandas as pd import torch import utils3d.torch from ..modules.sparse.basic import SparseTensor from .components import StandardDatasetBase class SparseFeat2Render(StandardDatasetBase): """ SparseFeat2Render dataset. Args: roots (str): paths to the dataset image_size (int): size of the image model (str): model name resolution (int): resolution of the data min_aesthetic_score (float): minimum aesthetic score max_num_voxels (int): maximum number of voxels """ def __init__( self, roots: str, image_size: int, model: str = 'dinov2_vitl14_reg', resolution: int = 64, min_aesthetic_score: float = 5.0, max_num_voxels: int = 32768, ): self.image_size = image_size self.model = model self.resolution = resolution self.min_aesthetic_score = min_aesthetic_score self.max_num_voxels = max_num_voxels self.value_range = (0, 1) super().__init__(roots) def filter_metadata(self, metadata): stats = {} metadata = metadata[metadata[f'feature_{self.model}']] stats['With features'] = len(metadata) metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score] stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata) metadata = metadata[metadata['num_voxels'] <= self.max_num_voxels] stats[f'Num voxels <= {self.max_num_voxels}'] = len(metadata) return metadata, stats def _get_image(self, root, instance): with open(os.path.join(root, 'renders', instance, 'transforms.json')) as f: metadata = json.load(f) n_views = len(metadata['frames']) view = np.random.randint(n_views) metadata = metadata['frames'][view] fov = metadata['camera_angle_x'] intrinsics = utils3d.torch.intrinsics_from_fov_xy(torch.tensor(fov), torch.tensor(fov)) c2w = torch.tensor(metadata['transform_matrix']) c2w[:3, 1:3] *= -1 extrinsics = torch.inverse(c2w) image_path = os.path.join(root, 'renders', instance, metadata['file_path']) image = Image.open(image_path) alpha = image.getchannel(3) image = image.convert('RGB') image = image.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS) alpha = alpha.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS) image = torch.tensor(np.array(image)).permute(2, 0, 1).float() / 255.0 alpha = torch.tensor(np.array(alpha)).float() / 255.0 return { 'image': image, 'alpha': alpha, 'extrinsics': extrinsics, 'intrinsics': intrinsics, } def _get_feat(self, root, instance): DATA_RESOLUTION = 64 feats_path = os.path.join(root, 'features', self.model, f'{instance}.npz') feats = np.load(feats_path, allow_pickle=True) coords = torch.tensor(feats['indices']).int() feats = torch.tensor(feats['patchtokens']).float() if self.resolution != DATA_RESOLUTION: factor = DATA_RESOLUTION // self.resolution coords = coords // factor coords, idx = coords.unique(return_inverse=True, dim=0) feats = torch.scatter_reduce( torch.zeros(coords.shape[0], feats.shape[1], device=feats.device), dim=0, index=idx.unsqueeze(-1).expand(-1, feats.shape[1]), src=feats, reduce='mean' ) return { 'coords': coords, 'feats': feats, } @torch.no_grad() def visualize_sample(self, sample: dict): return sample['image'] @staticmethod def collate_fn(batch): pack = {} coords = [] for i, b in enumerate(batch): coords.append(torch.cat([torch.full((b['coords'].shape[0], 1), i, dtype=torch.int32), b['coords']], dim=-1)) coords = torch.cat(coords) feats = torch.cat([b['feats'] for b in batch]) pack['feats'] = SparseTensor( coords=coords, feats=feats, ) pack['image'] = torch.stack([b['image'] for b in batch]) pack['alpha'] = torch.stack([b['alpha'] for b in batch]) pack['extrinsics'] = torch.stack([b['extrinsics'] for b in batch]) pack['intrinsics'] = torch.stack([b['intrinsics'] for b in batch]) return pack def get_instance(self, root, instance): image = self._get_image(root, instance) feat = self._get_feat(root, instance) return { **image, **feat, }