Spaces:
Running
on
Zero
Running
on
Zero
from typing import * | |
from abc import abstractmethod | |
import os | |
import json | |
import torch | |
import numpy as np | |
import pandas as pd | |
from PIL import Image | |
from torch.utils.data import Dataset | |
class StandardDatasetBase(Dataset): | |
""" | |
Base class for standard datasets. | |
Args: | |
roots (str): paths to the dataset | |
""" | |
def __init__(self, | |
roots: str, | |
): | |
super().__init__() | |
self.roots = roots.split(',') | |
self.instances = [] | |
self.metadata = pd.DataFrame() | |
self._stats = {} | |
for root in self.roots: | |
key = os.path.basename(root) | |
self._stats[key] = {} | |
metadata = pd.read_csv(os.path.join(root, 'metadata.csv')) | |
self._stats[key]['Total'] = len(metadata) | |
metadata, stats = self.filter_metadata(metadata) | |
self._stats[key].update(stats) | |
self.instances.extend([(root, sha256) for sha256 in metadata['sha256'].values]) | |
metadata.set_index('sha256', inplace=True) | |
self.metadata = pd.concat([self.metadata, metadata]) | |
def filter_metadata(self, metadata: pd.DataFrame) -> Tuple[pd.DataFrame, Dict[str, int]]: | |
pass | |
def get_instance(self, root: str, instance: str) -> Dict[str, Any]: | |
pass | |
def __len__(self): | |
return len(self.instances) | |
def __getitem__(self, index) -> Dict[str, Any]: | |
try: | |
root, instance = self.instances[index] | |
return self.get_instance(root, instance) | |
except Exception as e: | |
print(e) | |
return self.__getitem__(np.random.randint(0, len(self))) | |
def __str__(self): | |
lines = [] | |
lines.append(self.__class__.__name__) | |
lines.append(f' - Total instances: {len(self)}') | |
lines.append(f' - Sources:') | |
for key, stats in self._stats.items(): | |
lines.append(f' - {key}:') | |
for k, v in stats.items(): | |
lines.append(f' - {k}: {v}') | |
return '\n'.join(lines) | |
class TextConditionedMixin: | |
def __init__(self, roots, **kwargs): | |
super().__init__(roots, **kwargs) | |
self.captions = {} | |
for instance in self.instances: | |
sha256 = instance[1] | |
self.captions[sha256] = json.loads(self.metadata.loc[sha256]['captions']) | |
def filter_metadata(self, metadata): | |
metadata, stats = super().filter_metadata(metadata) | |
metadata = metadata[metadata['captions'].notna()] | |
stats['With captions'] = len(metadata) | |
return metadata, stats | |
def get_instance(self, root, instance): | |
pack = super().get_instance(root, instance) | |
text = np.random.choice(self.captions[instance]) | |
pack['cond'] = text | |
return pack | |
class ImageConditionedMixin: | |
def __init__(self, roots, *, image_size=518, **kwargs): | |
self.image_size = image_size | |
super().__init__(roots, **kwargs) | |
def filter_metadata(self, metadata): | |
metadata, stats = super().filter_metadata(metadata) | |
metadata = metadata[metadata[f'cond_rendered']] | |
stats['Cond rendered'] = len(metadata) | |
return metadata, stats | |
def get_instance(self, root, instance): | |
pack = super().get_instance(root, instance) | |
image_root = os.path.join(root, 'renders_cond', instance) | |
with open(os.path.join(image_root, 'transforms.json')) as f: | |
metadata = json.load(f) | |
n_views = len(metadata['frames']) | |
view = np.random.randint(n_views) | |
metadata = metadata['frames'][view] | |
image_path = os.path.join(image_root, metadata['file_path']) | |
image = Image.open(image_path) | |
alpha = np.array(image.getchannel(3)) | |
bbox = np.array(alpha).nonzero() | |
bbox = [bbox[1].min(), bbox[0].min(), bbox[1].max(), bbox[0].max()] | |
center = [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2] | |
hsize = max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2 | |
aug_size_ratio = 1.2 | |
aug_hsize = hsize * aug_size_ratio | |
aug_center_offset = [0, 0] | |
aug_center = [center[0] + aug_center_offset[0], center[1] + aug_center_offset[1]] | |
aug_bbox = [int(aug_center[0] - aug_hsize), int(aug_center[1] - aug_hsize), int(aug_center[0] + aug_hsize), int(aug_center[1] + aug_hsize)] | |
image = image.crop(aug_bbox) | |
image = image.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS) | |
alpha = image.getchannel(3) | |
image = image.convert('RGB') | |
image = torch.tensor(np.array(image)).permute(2, 0, 1).float() / 255.0 | |
alpha = torch.tensor(np.array(alpha)).float() / 255.0 | |
image = image * alpha.unsqueeze(0) | |
pack['cond'] = image | |
return pack | |