File size: 5,010 Bytes
178f950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from typing import *
from abc import abstractmethod
import os
import json
import torch
import numpy as np
import pandas as pd
from PIL import Image
from torch.utils.data import Dataset


class StandardDatasetBase(Dataset):
    """

    Base class for standard datasets.



    Args:

        roots (str): paths to the dataset

    """

    def __init__(self,

        roots: str,

    ):
        super().__init__()
        self.roots = roots.split(',')
        self.instances = []
        self.metadata = pd.DataFrame()
        
        self._stats = {}
        for root in self.roots:
            key = os.path.basename(root)
            self._stats[key] = {}
            metadata = pd.read_csv(os.path.join(root, 'metadata.csv'))
            self._stats[key]['Total'] = len(metadata)
            metadata, stats = self.filter_metadata(metadata)
            self._stats[key].update(stats)
            self.instances.extend([(root, sha256) for sha256 in metadata['sha256'].values])
            metadata.set_index('sha256', inplace=True)
            self.metadata = pd.concat([self.metadata, metadata])
            
    @abstractmethod
    def filter_metadata(self, metadata: pd.DataFrame) -> Tuple[pd.DataFrame, Dict[str, int]]:
        pass
    
    @abstractmethod
    def get_instance(self, root: str, instance: str) -> Dict[str, Any]:
        pass
        
    def __len__(self):
        return len(self.instances)

    def __getitem__(self, index) -> Dict[str, Any]:
        try:
            root, instance = self.instances[index]
            return self.get_instance(root, instance)
        except Exception as e:
            print(e)
            return self.__getitem__(np.random.randint(0, len(self)))
        
    def __str__(self):
        lines = []
        lines.append(self.__class__.__name__)
        lines.append(f'  - Total instances: {len(self)}')
        lines.append(f'  - Sources:')
        for key, stats in self._stats.items():
            lines.append(f'    - {key}:')
            for k, v in stats.items():
                lines.append(f'      - {k}: {v}')
        return '\n'.join(lines)


class TextConditionedMixin:
    def __init__(self, roots, **kwargs):
        super().__init__(roots, **kwargs)
        self.captions = {}
        for instance in self.instances:
            sha256 = instance[1]
            self.captions[sha256] = json.loads(self.metadata.loc[sha256]['captions'])
    
    def filter_metadata(self, metadata):
        metadata, stats = super().filter_metadata(metadata)
        metadata = metadata[metadata['captions'].notna()]
        stats['With captions'] = len(metadata)
        return metadata, stats
    
    def get_instance(self, root, instance):
        pack = super().get_instance(root, instance)
        text = np.random.choice(self.captions[instance])
        pack['cond'] = text
        return pack
    
    
class ImageConditionedMixin:
    def __init__(self, roots, *, image_size=518, **kwargs):
        self.image_size = image_size
        super().__init__(roots, **kwargs)
    
    def filter_metadata(self, metadata):
        metadata, stats = super().filter_metadata(metadata)
        metadata = metadata[metadata[f'cond_rendered']]
        stats['Cond rendered'] = len(metadata)
        return metadata, stats
    
    def get_instance(self, root, instance):
        pack = super().get_instance(root, instance)
       
        image_root = os.path.join(root, 'renders_cond', instance)
        with open(os.path.join(image_root, 'transforms.json')) as f:
            metadata = json.load(f)
        n_views = len(metadata['frames'])
        view = np.random.randint(n_views)
        metadata = metadata['frames'][view]

        image_path = os.path.join(image_root, metadata['file_path'])
        image = Image.open(image_path)

        alpha = np.array(image.getchannel(3))
        bbox = np.array(alpha).nonzero()
        bbox = [bbox[1].min(), bbox[0].min(), bbox[1].max(), bbox[0].max()]
        center = [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2]
        hsize = max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2
        aug_size_ratio = 1.2
        aug_hsize = hsize * aug_size_ratio
        aug_center_offset = [0, 0]
        aug_center = [center[0] + aug_center_offset[0], center[1] + aug_center_offset[1]]
        aug_bbox = [int(aug_center[0] - aug_hsize), int(aug_center[1] - aug_hsize), int(aug_center[0] + aug_hsize), int(aug_center[1] + aug_hsize)]
        image = image.crop(aug_bbox)

        image = image.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS)
        alpha = image.getchannel(3)
        image = image.convert('RGB')
        image = torch.tensor(np.array(image)).permute(2, 0, 1).float() / 255.0
        alpha = torch.tensor(np.array(alpha)).float() / 255.0
        image = image * alpha.unsqueeze(0)
        pack['cond'] = image
       
        return pack