Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,010 Bytes
178f950 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
from typing import *
from abc import abstractmethod
import os
import json
import torch
import numpy as np
import pandas as pd
from PIL import Image
from torch.utils.data import Dataset
class StandardDatasetBase(Dataset):
"""
Base class for standard datasets.
Args:
roots (str): paths to the dataset
"""
def __init__(self,
roots: str,
):
super().__init__()
self.roots = roots.split(',')
self.instances = []
self.metadata = pd.DataFrame()
self._stats = {}
for root in self.roots:
key = os.path.basename(root)
self._stats[key] = {}
metadata = pd.read_csv(os.path.join(root, 'metadata.csv'))
self._stats[key]['Total'] = len(metadata)
metadata, stats = self.filter_metadata(metadata)
self._stats[key].update(stats)
self.instances.extend([(root, sha256) for sha256 in metadata['sha256'].values])
metadata.set_index('sha256', inplace=True)
self.metadata = pd.concat([self.metadata, metadata])
@abstractmethod
def filter_metadata(self, metadata: pd.DataFrame) -> Tuple[pd.DataFrame, Dict[str, int]]:
pass
@abstractmethod
def get_instance(self, root: str, instance: str) -> Dict[str, Any]:
pass
def __len__(self):
return len(self.instances)
def __getitem__(self, index) -> Dict[str, Any]:
try:
root, instance = self.instances[index]
return self.get_instance(root, instance)
except Exception as e:
print(e)
return self.__getitem__(np.random.randint(0, len(self)))
def __str__(self):
lines = []
lines.append(self.__class__.__name__)
lines.append(f' - Total instances: {len(self)}')
lines.append(f' - Sources:')
for key, stats in self._stats.items():
lines.append(f' - {key}:')
for k, v in stats.items():
lines.append(f' - {k}: {v}')
return '\n'.join(lines)
class TextConditionedMixin:
def __init__(self, roots, **kwargs):
super().__init__(roots, **kwargs)
self.captions = {}
for instance in self.instances:
sha256 = instance[1]
self.captions[sha256] = json.loads(self.metadata.loc[sha256]['captions'])
def filter_metadata(self, metadata):
metadata, stats = super().filter_metadata(metadata)
metadata = metadata[metadata['captions'].notna()]
stats['With captions'] = len(metadata)
return metadata, stats
def get_instance(self, root, instance):
pack = super().get_instance(root, instance)
text = np.random.choice(self.captions[instance])
pack['cond'] = text
return pack
class ImageConditionedMixin:
def __init__(self, roots, *, image_size=518, **kwargs):
self.image_size = image_size
super().__init__(roots, **kwargs)
def filter_metadata(self, metadata):
metadata, stats = super().filter_metadata(metadata)
metadata = metadata[metadata[f'cond_rendered']]
stats['Cond rendered'] = len(metadata)
return metadata, stats
def get_instance(self, root, instance):
pack = super().get_instance(root, instance)
image_root = os.path.join(root, 'renders_cond', instance)
with open(os.path.join(image_root, 'transforms.json')) as f:
metadata = json.load(f)
n_views = len(metadata['frames'])
view = np.random.randint(n_views)
metadata = metadata['frames'][view]
image_path = os.path.join(image_root, metadata['file_path'])
image = Image.open(image_path)
alpha = np.array(image.getchannel(3))
bbox = np.array(alpha).nonzero()
bbox = [bbox[1].min(), bbox[0].min(), bbox[1].max(), bbox[0].max()]
center = [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2]
hsize = max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2
aug_size_ratio = 1.2
aug_hsize = hsize * aug_size_ratio
aug_center_offset = [0, 0]
aug_center = [center[0] + aug_center_offset[0], center[1] + aug_center_offset[1]]
aug_bbox = [int(aug_center[0] - aug_hsize), int(aug_center[1] - aug_hsize), int(aug_center[0] + aug_hsize), int(aug_center[1] + aug_hsize)]
image = image.crop(aug_bbox)
image = image.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS)
alpha = image.getchannel(3)
image = image.convert('RGB')
image = torch.tensor(np.array(image)).permute(2, 0, 1).float() / 255.0
alpha = torch.tensor(np.array(alpha)).float() / 255.0
image = image * alpha.unsqueeze(0)
pack['cond'] = image
return pack
|