Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved. | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import dataclasses | |
import gradio as gr | |
import torch | |
from uno.flux.pipeline import UNOPipeline | |
def create_demo( | |
model_type: str, | |
device: str = "cuda" if torch.cuda.is_available() else "cpu", | |
offload: bool = False, | |
): | |
pipeline = UNOPipeline(model_type, device, offload, only_lora=True, lora_rank=512) | |
with gr.Blocks() as demo: | |
gr.Markdown(f"# UNO by UNO team") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", value="handsome woman in the city") | |
with gr.Row(): | |
image_prompt1 = gr.Image(label="ref img1", visible=True, interactive=True, type="pil") | |
image_prompt2 = gr.Image(label="ref img2", visible=True, interactive=True, type="pil") | |
image_prompt3 = gr.Image(label="ref img3", visible=True, interactive=True, type="pil") | |
image_prompt4 = gr.Image(label="ref img4", visible=True, interactive=True, type="pil") | |
with gr.Row(): | |
with gr.Column(): | |
ref_long_side = gr.Slider(128, 512, 512, step=16, label="Long side of Ref Images") | |
with gr.Column(): | |
gr.Markdown("📌 **The recommended ref scale** is related to the ref img number.\n") | |
gr.Markdown(" 1->512 / 2->320 / 3...n->256") | |
with gr.Row(): | |
with gr.Column(): | |
width = gr.Slider(512, 2048, 512, step=16, label="Gneration Width") | |
height = gr.Slider(512, 2048, 512, step=16, label="Gneration Height") | |
with gr.Column(): | |
gr.Markdown("📌 The model trained on 512x512 resolution.\n") | |
gr.Markdown( | |
"The size closer to 512 is more stable," | |
" and the higher size gives a better visual effect but is less stable" | |
) | |
with gr.Accordion("Generation Options", open=False): | |
with gr.Row(): | |
num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps") | |
guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True) | |
seed = gr.Number(-1, label="Seed (-1 for random)") | |
generate_btn = gr.Button("Generate") | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Image") | |
download_btn = gr.File(label="Download full-resolution", type="filepath", interactive=False) | |
inputs = [ | |
prompt, width, height, guidance, num_steps, | |
seed, ref_long_side, image_prompt1, image_prompt2, image_prompt3, image_prompt4 | |
] | |
generate_btn.click( | |
fn=pipeline.gradio_generate, | |
inputs=inputs, | |
outputs=[output_image, download_btn], | |
) | |
return demo | |
if __name__ == "__main__": | |
from typing import Literal | |
from transformers import HfArgumentParser | |
class AppArgs: | |
name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev" | |
device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu" | |
offload: bool = dataclasses.field( | |
default=False, | |
metadata={"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."} | |
) | |
port: int = 7860 | |
parser = HfArgumentParser([AppArgs]) | |
args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs] | |
args = args_tuple[0] | |
demo = create_demo(args.name, args.device, args.offload) | |
demo.launch(server_port=args.port) | |