Spaces:
Running
on
Zero
Running
on
Zero
wuwenxu.01
commited on
Commit
·
def2fd8
1
Parent(s):
e8e76e7
feat: filter move app code from github
Browse files- .gitignore +178 -0
- README.md +17 -1
- app.py +104 -0
- requirements.txt +10 -0
- uno/dataset/uno.py +132 -0
- uno/flux/math.py +45 -0
- uno/flux/model.py +222 -0
- uno/flux/modules/autoencoder.py +327 -0
- uno/flux/modules/conditioner.py +53 -0
- uno/flux/modules/layers.py +435 -0
- uno/flux/pipeline.py +324 -0
- uno/flux/sampling.py +271 -0
- uno/flux/util.py +390 -0
- uno/utils/convert_yaml_to_args_file.py +34 -0
.gitignore
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# UV
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
#uv.lock
|
102 |
+
|
103 |
+
# poetry
|
104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
106 |
+
# commonly ignored for libraries.
|
107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
108 |
+
#poetry.lock
|
109 |
+
|
110 |
+
# pdm
|
111 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
112 |
+
#pdm.lock
|
113 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
114 |
+
# in version control.
|
115 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
116 |
+
.pdm.toml
|
117 |
+
.pdm-python
|
118 |
+
.pdm-build/
|
119 |
+
|
120 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
121 |
+
__pypackages__/
|
122 |
+
|
123 |
+
# Celery stuff
|
124 |
+
celerybeat-schedule
|
125 |
+
celerybeat.pid
|
126 |
+
|
127 |
+
# SageMath parsed files
|
128 |
+
*.sage.py
|
129 |
+
|
130 |
+
# Environments
|
131 |
+
.env
|
132 |
+
.venv
|
133 |
+
env/
|
134 |
+
venv/
|
135 |
+
ENV/
|
136 |
+
env.bak/
|
137 |
+
venv.bak/
|
138 |
+
|
139 |
+
# Spyder project settings
|
140 |
+
.spyderproject
|
141 |
+
.spyproject
|
142 |
+
|
143 |
+
# Rope project settings
|
144 |
+
.ropeproject
|
145 |
+
|
146 |
+
# mkdocs documentation
|
147 |
+
/site
|
148 |
+
|
149 |
+
# mypy
|
150 |
+
.mypy_cache/
|
151 |
+
.dmypy.json
|
152 |
+
dmypy.json
|
153 |
+
|
154 |
+
# Pyre type checker
|
155 |
+
.pyre/
|
156 |
+
|
157 |
+
# pytype static type analyzer
|
158 |
+
.pytype/
|
159 |
+
|
160 |
+
# Cython debug symbols
|
161 |
+
cython_debug/
|
162 |
+
|
163 |
+
# PyCharm
|
164 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
165 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
166 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
167 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
168 |
+
#.idea/
|
169 |
+
|
170 |
+
# Ruff stuff:
|
171 |
+
.ruff_cache/
|
172 |
+
|
173 |
+
# PyPI configuration file
|
174 |
+
.pypirc
|
175 |
+
|
176 |
+
# User config files
|
177 |
+
.vscode/
|
178 |
+
output/
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: UNO FLUX
|
3 |
-
emoji:
|
4 |
colorFrom: indigo
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
@@ -9,6 +9,22 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
license: cc-by-nc-4.0
|
11 |
short_description: Generate customized images using text and multiple images
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: UNO FLUX
|
3 |
+
emoji: ⚡️
|
4 |
colorFrom: indigo
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
|
|
9 |
pinned: false
|
10 |
license: cc-by-nc-4.0
|
11 |
short_description: Generate customized images using text and multiple images
|
12 |
+
models:
|
13 |
+
- black-forest-labs/FLUX.1-dev
|
14 |
+
- bytedance-research/UNO
|
15 |
---
|
16 |
|
17 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
18 |
+
|
19 |
+
## 📄 Disclaimer
|
20 |
+
|
21 |
+
We open-source this project for academic research. The vast majority of images
|
22 |
+
used in this project are either generated or licensed. If you have any concerns,
|
23 |
+
please contact us, and we will promptly remove any inappropriate content.
|
24 |
+
Our code is released under the Apache 2.0 License,, while our models are under
|
25 |
+
the CC BY-NC 4.0 License. Any models related to [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)
|
26 |
+
base model must adhere to the original licensing terms.
|
27 |
+
This research aims to advance the field of generative AI. Users are free to
|
28 |
+
create images using this tool, provided they comply with local laws and exercise
|
29 |
+
responsible usage. The developers are not liable for any misuse of the tool by users.
|
30 |
+
|
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
|
2 |
+
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import dataclasses
|
16 |
+
|
17 |
+
import gradio as gr
|
18 |
+
import torch
|
19 |
+
|
20 |
+
from uno.flux.pipeline import UNOPipeline
|
21 |
+
|
22 |
+
|
23 |
+
def create_demo(
|
24 |
+
model_type: str,
|
25 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
26 |
+
offload: bool = False,
|
27 |
+
):
|
28 |
+
pipeline = UNOPipeline(model_type, device, offload, only_lora=True, lora_rank=512)
|
29 |
+
|
30 |
+
with gr.Blocks() as demo:
|
31 |
+
gr.Markdown(f"# UNO by UNO team")
|
32 |
+
with gr.Row():
|
33 |
+
with gr.Column():
|
34 |
+
prompt = gr.Textbox(label="Prompt", value="handsome woman in the city")
|
35 |
+
with gr.Row():
|
36 |
+
image_prompt1 = gr.Image(label="ref img1", visible=True, interactive=True, type="pil")
|
37 |
+
image_prompt2 = gr.Image(label="ref img2", visible=True, interactive=True, type="pil")
|
38 |
+
image_prompt3 = gr.Image(label="ref img3", visible=True, interactive=True, type="pil")
|
39 |
+
image_prompt4 = gr.Image(label="ref img4", visible=True, interactive=True, type="pil")
|
40 |
+
|
41 |
+
with gr.Row():
|
42 |
+
with gr.Column():
|
43 |
+
ref_long_side = gr.Slider(128, 512, 512, step=16, label="Long side of Ref Images")
|
44 |
+
with gr.Column():
|
45 |
+
gr.Markdown("📌 **The recommended ref scale** is related to the ref img number.\n")
|
46 |
+
gr.Markdown(" 1->512 / 2->320 / 3...n->256")
|
47 |
+
|
48 |
+
with gr.Row():
|
49 |
+
with gr.Column():
|
50 |
+
width = gr.Slider(512, 2048, 512, step=16, label="Gneration Width")
|
51 |
+
height = gr.Slider(512, 2048, 512, step=16, label="Gneration Height")
|
52 |
+
with gr.Column():
|
53 |
+
gr.Markdown("📌 The model trained on 512x512 resolution.\n")
|
54 |
+
gr.Markdown(
|
55 |
+
"The size closer to 512 is more stable,"
|
56 |
+
" and the higher size gives a better visual effect but is less stable"
|
57 |
+
)
|
58 |
+
|
59 |
+
with gr.Accordion("Generation Options", open=False):
|
60 |
+
with gr.Row():
|
61 |
+
num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
|
62 |
+
guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True)
|
63 |
+
seed = gr.Number(-1, label="Seed (-1 for random)")
|
64 |
+
|
65 |
+
generate_btn = gr.Button("Generate")
|
66 |
+
|
67 |
+
with gr.Column():
|
68 |
+
output_image = gr.Image(label="Generated Image")
|
69 |
+
download_btn = gr.File(label="Download full-resolution", type="filepath", interactive=False)
|
70 |
+
|
71 |
+
|
72 |
+
inputs = [
|
73 |
+
prompt, width, height, guidance, num_steps,
|
74 |
+
seed, ref_long_side, image_prompt1, image_prompt2, image_prompt3, image_prompt4
|
75 |
+
]
|
76 |
+
generate_btn.click(
|
77 |
+
fn=pipeline.gradio_generate,
|
78 |
+
inputs=inputs,
|
79 |
+
outputs=[output_image, download_btn],
|
80 |
+
)
|
81 |
+
|
82 |
+
return demo
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
from typing import Literal
|
86 |
+
|
87 |
+
from transformers import HfArgumentParser
|
88 |
+
|
89 |
+
@dataclasses.dataclass
|
90 |
+
class AppArgs:
|
91 |
+
name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev"
|
92 |
+
device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu"
|
93 |
+
offload: bool = dataclasses.field(
|
94 |
+
default=False,
|
95 |
+
metadata={"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."}
|
96 |
+
)
|
97 |
+
port: int = 7860
|
98 |
+
|
99 |
+
parser = HfArgumentParser([AppArgs])
|
100 |
+
args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs]
|
101 |
+
args = args_tuple[0]
|
102 |
+
|
103 |
+
demo = create_demo(args.name, args.device, args.offload)
|
104 |
+
demo.launch(server_port=args.port)
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
einops==0.8.0
|
2 |
+
transformers==4.43.3
|
3 |
+
huggingface-hub
|
4 |
+
diffusers==0.30.1
|
5 |
+
sentencepiece==0.2.0
|
6 |
+
gradio==5.22.0
|
7 |
+
|
8 |
+
--extra-index-url https://download.pytorch.org/whl/cu124
|
9 |
+
torch==2.4.0
|
10 |
+
torchvision==0.19.0
|
uno/dataset/uno.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
|
2 |
+
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.
|
3 |
+
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
import torchvision.transforms.functional as TVF
|
22 |
+
from torch.utils.data import DataLoader, Dataset
|
23 |
+
from torchvision.transforms import Compose, Normalize, ToTensor
|
24 |
+
|
25 |
+
def bucket_images(images: list[torch.Tensor], resolution: int = 512):
|
26 |
+
bucket_override=[
|
27 |
+
# h w
|
28 |
+
(256, 768),
|
29 |
+
(320, 768),
|
30 |
+
(320, 704),
|
31 |
+
(384, 640),
|
32 |
+
(448, 576),
|
33 |
+
(512, 512),
|
34 |
+
(576, 448),
|
35 |
+
(640, 384),
|
36 |
+
(704, 320),
|
37 |
+
(768, 320),
|
38 |
+
(768, 256)
|
39 |
+
]
|
40 |
+
bucket_override = [(int(h / 512 * resolution), int(w / 512 * resolution)) for h, w in bucket_override]
|
41 |
+
bucket_override = [(h // 16 * 16, w // 16 * 16) for h, w in bucket_override]
|
42 |
+
|
43 |
+
aspect_ratios = [image.shape[-2] / image.shape[-1] for image in images]
|
44 |
+
mean_aspect_ratio = np.mean(aspect_ratios)
|
45 |
+
|
46 |
+
new_h, new_w = bucket_override[0]
|
47 |
+
min_aspect_diff = np.abs(new_h / new_w - mean_aspect_ratio)
|
48 |
+
for h, w in bucket_override:
|
49 |
+
aspect_diff = np.abs(h / w - mean_aspect_ratio)
|
50 |
+
if aspect_diff < min_aspect_diff:
|
51 |
+
min_aspect_diff = aspect_diff
|
52 |
+
new_h, new_w = h, w
|
53 |
+
|
54 |
+
images = [TVF.resize(image, (new_h, new_w)) for image in images]
|
55 |
+
images = torch.stack(images, dim=0)
|
56 |
+
return images
|
57 |
+
|
58 |
+
class FluxPairedDatasetV2(Dataset):
|
59 |
+
def __init__(self, json_file: str, resolution: int, resolution_ref: int | None = None):
|
60 |
+
super().__init__()
|
61 |
+
self.json_file = json_file
|
62 |
+
self.resolution = resolution
|
63 |
+
self.resolution_ref = resolution_ref if resolution_ref is not None else resolution
|
64 |
+
self.image_root = os.path.dirname(json_file)
|
65 |
+
|
66 |
+
with open(self.json_file, "rt") as f:
|
67 |
+
self.data_dicts = json.load(f)
|
68 |
+
|
69 |
+
self.transform = Compose([
|
70 |
+
ToTensor(),
|
71 |
+
Normalize([0.5], [0.5]),
|
72 |
+
])
|
73 |
+
|
74 |
+
def __getitem__(self, idx):
|
75 |
+
data_dict = self.data_dicts[idx]
|
76 |
+
image_paths = [data_dict["image_path"]] if "image_path" in data_dict else data_dict["image_paths"]
|
77 |
+
txt = data_dict["prompt"]
|
78 |
+
image_tgt_path = data_dict.get("image_tgt_path", None)
|
79 |
+
ref_imgs = [
|
80 |
+
Image.open(os.path.join(self.image_root, path)).convert("RGB")
|
81 |
+
for path in image_paths
|
82 |
+
]
|
83 |
+
ref_imgs = [self.transform(img) for img in ref_imgs]
|
84 |
+
img = None
|
85 |
+
if image_tgt_path is not None:
|
86 |
+
img = Image.open(os.path.join(self.image_root, image_tgt_path)).convert("RGB")
|
87 |
+
img = self.transform(img)
|
88 |
+
|
89 |
+
return {
|
90 |
+
"img": img,
|
91 |
+
"txt": txt,
|
92 |
+
"ref_imgs": ref_imgs,
|
93 |
+
}
|
94 |
+
|
95 |
+
def __len__(self):
|
96 |
+
return len(self.data_dicts)
|
97 |
+
|
98 |
+
def collate_fn(self, batch):
|
99 |
+
img = [data["img"] for data in batch]
|
100 |
+
txt = [data["txt"] for data in batch]
|
101 |
+
ref_imgs = [data["ref_imgs"] for data in batch]
|
102 |
+
assert all([len(ref_imgs[0]) == len(ref_imgs[i]) for i in range(len(ref_imgs))])
|
103 |
+
|
104 |
+
n_ref = len(ref_imgs[0])
|
105 |
+
|
106 |
+
img = bucket_images(img, self.resolution)
|
107 |
+
ref_imgs_new = []
|
108 |
+
for i in range(n_ref):
|
109 |
+
ref_imgs_i = [refs[i] for refs in ref_imgs]
|
110 |
+
ref_imgs_i = bucket_images(ref_imgs_i, self.resolution_ref)
|
111 |
+
ref_imgs_new.append(ref_imgs_i)
|
112 |
+
|
113 |
+
return {
|
114 |
+
"txt": txt,
|
115 |
+
"img": img,
|
116 |
+
"ref_imgs": ref_imgs_new,
|
117 |
+
}
|
118 |
+
|
119 |
+
if __name__ == '__main__':
|
120 |
+
import argparse
|
121 |
+
from pprint import pprint
|
122 |
+
parser = argparse.ArgumentParser()
|
123 |
+
# parser.add_argument("--json_file", type=str, required=True)
|
124 |
+
parser.add_argument("--json_file", type=str, default="datasets/fake_train_data.json")
|
125 |
+
args = parser.parse_args()
|
126 |
+
dataset = FluxPairedDatasetV2(args.json_file, 512)
|
127 |
+
dataloder = DataLoader(dataset, batch_size=4, collate_fn=dataset.collate_fn)
|
128 |
+
|
129 |
+
for i, data_dict in enumerate(dataloder):
|
130 |
+
pprint(i)
|
131 |
+
pprint(data_dict)
|
132 |
+
breakpoint()
|
uno/flux/math.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
|
2 |
+
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.
|
3 |
+
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import torch
|
17 |
+
from einops import rearrange
|
18 |
+
from torch import Tensor
|
19 |
+
|
20 |
+
|
21 |
+
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
|
22 |
+
q, k = apply_rope(q, k, pe)
|
23 |
+
|
24 |
+
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
25 |
+
x = rearrange(x, "B H L D -> B L (H D)")
|
26 |
+
|
27 |
+
return x
|
28 |
+
|
29 |
+
|
30 |
+
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
31 |
+
assert dim % 2 == 0
|
32 |
+
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
|
33 |
+
omega = 1.0 / (theta**scale)
|
34 |
+
out = torch.einsum("...n,d->...nd", pos, omega)
|
35 |
+
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
|
36 |
+
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
37 |
+
return out.float()
|
38 |
+
|
39 |
+
|
40 |
+
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
|
41 |
+
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
42 |
+
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
43 |
+
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
44 |
+
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
45 |
+
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
uno/flux/model.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
|
2 |
+
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.
|
3 |
+
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from dataclasses import dataclass
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import Tensor, nn
|
20 |
+
|
21 |
+
from .modules.layers import DoubleStreamBlock, EmbedND, LastLayer, MLPEmbedder, SingleStreamBlock, timestep_embedding
|
22 |
+
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class FluxParams:
|
26 |
+
in_channels: int
|
27 |
+
vec_in_dim: int
|
28 |
+
context_in_dim: int
|
29 |
+
hidden_size: int
|
30 |
+
mlp_ratio: float
|
31 |
+
num_heads: int
|
32 |
+
depth: int
|
33 |
+
depth_single_blocks: int
|
34 |
+
axes_dim: list[int]
|
35 |
+
theta: int
|
36 |
+
qkv_bias: bool
|
37 |
+
guidance_embed: bool
|
38 |
+
|
39 |
+
|
40 |
+
class Flux(nn.Module):
|
41 |
+
"""
|
42 |
+
Transformer model for flow matching on sequences.
|
43 |
+
"""
|
44 |
+
_supports_gradient_checkpointing = True
|
45 |
+
|
46 |
+
def __init__(self, params: FluxParams):
|
47 |
+
super().__init__()
|
48 |
+
|
49 |
+
self.params = params
|
50 |
+
self.in_channels = params.in_channels
|
51 |
+
self.out_channels = self.in_channels
|
52 |
+
if params.hidden_size % params.num_heads != 0:
|
53 |
+
raise ValueError(
|
54 |
+
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
55 |
+
)
|
56 |
+
pe_dim = params.hidden_size // params.num_heads
|
57 |
+
if sum(params.axes_dim) != pe_dim:
|
58 |
+
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
59 |
+
self.hidden_size = params.hidden_size
|
60 |
+
self.num_heads = params.num_heads
|
61 |
+
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
62 |
+
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
63 |
+
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
64 |
+
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
|
65 |
+
self.guidance_in = (
|
66 |
+
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
|
67 |
+
)
|
68 |
+
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
|
69 |
+
|
70 |
+
self.double_blocks = nn.ModuleList(
|
71 |
+
[
|
72 |
+
DoubleStreamBlock(
|
73 |
+
self.hidden_size,
|
74 |
+
self.num_heads,
|
75 |
+
mlp_ratio=params.mlp_ratio,
|
76 |
+
qkv_bias=params.qkv_bias,
|
77 |
+
)
|
78 |
+
for _ in range(params.depth)
|
79 |
+
]
|
80 |
+
)
|
81 |
+
|
82 |
+
self.single_blocks = nn.ModuleList(
|
83 |
+
[
|
84 |
+
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
|
85 |
+
for _ in range(params.depth_single_blocks)
|
86 |
+
]
|
87 |
+
)
|
88 |
+
|
89 |
+
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
90 |
+
self.gradient_checkpointing = False
|
91 |
+
|
92 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
93 |
+
if hasattr(module, "gradient_checkpointing"):
|
94 |
+
module.gradient_checkpointing = value
|
95 |
+
|
96 |
+
@property
|
97 |
+
def attn_processors(self):
|
98 |
+
# set recursively
|
99 |
+
processors = {} # type: dict[str, nn.Module]
|
100 |
+
|
101 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors):
|
102 |
+
if hasattr(module, "set_processor"):
|
103 |
+
processors[f"{name}.processor"] = module.processor
|
104 |
+
|
105 |
+
for sub_name, child in module.named_children():
|
106 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
107 |
+
|
108 |
+
return processors
|
109 |
+
|
110 |
+
for name, module in self.named_children():
|
111 |
+
fn_recursive_add_processors(name, module, processors)
|
112 |
+
|
113 |
+
return processors
|
114 |
+
|
115 |
+
def set_attn_processor(self, processor):
|
116 |
+
r"""
|
117 |
+
Sets the attention processor to use to compute attention.
|
118 |
+
|
119 |
+
Parameters:
|
120 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
121 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
122 |
+
for **all** `Attention` layers.
|
123 |
+
|
124 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
125 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
126 |
+
|
127 |
+
"""
|
128 |
+
count = len(self.attn_processors.keys())
|
129 |
+
|
130 |
+
if isinstance(processor, dict) and len(processor) != count:
|
131 |
+
raise ValueError(
|
132 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
133 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
134 |
+
)
|
135 |
+
|
136 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
137 |
+
if hasattr(module, "set_processor"):
|
138 |
+
if not isinstance(processor, dict):
|
139 |
+
module.set_processor(processor)
|
140 |
+
else:
|
141 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
142 |
+
|
143 |
+
for sub_name, child in module.named_children():
|
144 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
145 |
+
|
146 |
+
for name, module in self.named_children():
|
147 |
+
fn_recursive_attn_processor(name, module, processor)
|
148 |
+
|
149 |
+
def forward(
|
150 |
+
self,
|
151 |
+
img: Tensor,
|
152 |
+
img_ids: Tensor,
|
153 |
+
txt: Tensor,
|
154 |
+
txt_ids: Tensor,
|
155 |
+
timesteps: Tensor,
|
156 |
+
y: Tensor,
|
157 |
+
guidance: Tensor | None = None,
|
158 |
+
ref_img: Tensor | None = None,
|
159 |
+
ref_img_ids: Tensor | None = None,
|
160 |
+
) -> Tensor:
|
161 |
+
if img.ndim != 3 or txt.ndim != 3:
|
162 |
+
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
163 |
+
|
164 |
+
# running on sequences img
|
165 |
+
img = self.img_in(img)
|
166 |
+
vec = self.time_in(timestep_embedding(timesteps, 256))
|
167 |
+
if self.params.guidance_embed:
|
168 |
+
if guidance is None:
|
169 |
+
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
170 |
+
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
171 |
+
vec = vec + self.vector_in(y)
|
172 |
+
txt = self.txt_in(txt)
|
173 |
+
|
174 |
+
ids = torch.cat((txt_ids, img_ids), dim=1)
|
175 |
+
|
176 |
+
# concat ref_img/img
|
177 |
+
img_end = img.shape[1]
|
178 |
+
if ref_img is not None:
|
179 |
+
if isinstance(ref_img, tuple) or isinstance(ref_img, list):
|
180 |
+
img_in = [img] + [self.img_in(ref) for ref in ref_img]
|
181 |
+
img_ids = [ids] + [ref_ids for ref_ids in ref_img_ids]
|
182 |
+
img = torch.cat(img_in, dim=1)
|
183 |
+
ids = torch.cat(img_ids, dim=1)
|
184 |
+
else:
|
185 |
+
img = torch.cat((img, self.img_in(ref_img)), dim=1)
|
186 |
+
ids = torch.cat((ids, ref_img_ids), dim=1)
|
187 |
+
pe = self.pe_embedder(ids)
|
188 |
+
|
189 |
+
for index_block, block in enumerate(self.double_blocks):
|
190 |
+
if self.training and self.gradient_checkpointing:
|
191 |
+
img, txt = torch.utils.checkpoint.checkpoint(
|
192 |
+
block,
|
193 |
+
img=img,
|
194 |
+
txt=txt,
|
195 |
+
vec=vec,
|
196 |
+
pe=pe,
|
197 |
+
use_reentrant=False,
|
198 |
+
)
|
199 |
+
else:
|
200 |
+
img, txt = block(
|
201 |
+
img=img,
|
202 |
+
txt=txt,
|
203 |
+
vec=vec,
|
204 |
+
pe=pe
|
205 |
+
)
|
206 |
+
|
207 |
+
img = torch.cat((txt, img), 1)
|
208 |
+
for block in self.single_blocks:
|
209 |
+
if self.training and self.gradient_checkpointing:
|
210 |
+
img = torch.utils.checkpoint.checkpoint(
|
211 |
+
block,
|
212 |
+
img, vec=vec, pe=pe,
|
213 |
+
use_reentrant=False
|
214 |
+
)
|
215 |
+
else:
|
216 |
+
img = block(img, vec=vec, pe=pe)
|
217 |
+
img = img[:, txt.shape[1] :, ...]
|
218 |
+
# index img
|
219 |
+
img = img[:, :img_end, ...]
|
220 |
+
|
221 |
+
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
222 |
+
return img
|
uno/flux/modules/autoencoder.py
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
|
2 |
+
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.
|
3 |
+
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from dataclasses import dataclass
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from einops import rearrange
|
20 |
+
from torch import Tensor, nn
|
21 |
+
|
22 |
+
|
23 |
+
@dataclass
|
24 |
+
class AutoEncoderParams:
|
25 |
+
resolution: int
|
26 |
+
in_channels: int
|
27 |
+
ch: int
|
28 |
+
out_ch: int
|
29 |
+
ch_mult: list[int]
|
30 |
+
num_res_blocks: int
|
31 |
+
z_channels: int
|
32 |
+
scale_factor: float
|
33 |
+
shift_factor: float
|
34 |
+
|
35 |
+
|
36 |
+
def swish(x: Tensor) -> Tensor:
|
37 |
+
return x * torch.sigmoid(x)
|
38 |
+
|
39 |
+
|
40 |
+
class AttnBlock(nn.Module):
|
41 |
+
def __init__(self, in_channels: int):
|
42 |
+
super().__init__()
|
43 |
+
self.in_channels = in_channels
|
44 |
+
|
45 |
+
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
46 |
+
|
47 |
+
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
48 |
+
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
49 |
+
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
50 |
+
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
51 |
+
|
52 |
+
def attention(self, h_: Tensor) -> Tensor:
|
53 |
+
h_ = self.norm(h_)
|
54 |
+
q = self.q(h_)
|
55 |
+
k = self.k(h_)
|
56 |
+
v = self.v(h_)
|
57 |
+
|
58 |
+
b, c, h, w = q.shape
|
59 |
+
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
|
60 |
+
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
|
61 |
+
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
|
62 |
+
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
|
63 |
+
|
64 |
+
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
65 |
+
|
66 |
+
def forward(self, x: Tensor) -> Tensor:
|
67 |
+
return x + self.proj_out(self.attention(x))
|
68 |
+
|
69 |
+
|
70 |
+
class ResnetBlock(nn.Module):
|
71 |
+
def __init__(self, in_channels: int, out_channels: int):
|
72 |
+
super().__init__()
|
73 |
+
self.in_channels = in_channels
|
74 |
+
out_channels = in_channels if out_channels is None else out_channels
|
75 |
+
self.out_channels = out_channels
|
76 |
+
|
77 |
+
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
78 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
79 |
+
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
|
80 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
81 |
+
if self.in_channels != self.out_channels:
|
82 |
+
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
h = x
|
86 |
+
h = self.norm1(h)
|
87 |
+
h = swish(h)
|
88 |
+
h = self.conv1(h)
|
89 |
+
|
90 |
+
h = self.norm2(h)
|
91 |
+
h = swish(h)
|
92 |
+
h = self.conv2(h)
|
93 |
+
|
94 |
+
if self.in_channels != self.out_channels:
|
95 |
+
x = self.nin_shortcut(x)
|
96 |
+
|
97 |
+
return x + h
|
98 |
+
|
99 |
+
|
100 |
+
class Downsample(nn.Module):
|
101 |
+
def __init__(self, in_channels: int):
|
102 |
+
super().__init__()
|
103 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
104 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
105 |
+
|
106 |
+
def forward(self, x: Tensor):
|
107 |
+
pad = (0, 1, 0, 1)
|
108 |
+
x = nn.functional.pad(x, pad, mode="constant", value=0)
|
109 |
+
x = self.conv(x)
|
110 |
+
return x
|
111 |
+
|
112 |
+
|
113 |
+
class Upsample(nn.Module):
|
114 |
+
def __init__(self, in_channels: int):
|
115 |
+
super().__init__()
|
116 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
117 |
+
|
118 |
+
def forward(self, x: Tensor):
|
119 |
+
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
120 |
+
x = self.conv(x)
|
121 |
+
return x
|
122 |
+
|
123 |
+
|
124 |
+
class Encoder(nn.Module):
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
resolution: int,
|
128 |
+
in_channels: int,
|
129 |
+
ch: int,
|
130 |
+
ch_mult: list[int],
|
131 |
+
num_res_blocks: int,
|
132 |
+
z_channels: int,
|
133 |
+
):
|
134 |
+
super().__init__()
|
135 |
+
self.ch = ch
|
136 |
+
self.num_resolutions = len(ch_mult)
|
137 |
+
self.num_res_blocks = num_res_blocks
|
138 |
+
self.resolution = resolution
|
139 |
+
self.in_channels = in_channels
|
140 |
+
# downsampling
|
141 |
+
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
142 |
+
|
143 |
+
curr_res = resolution
|
144 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
145 |
+
self.in_ch_mult = in_ch_mult
|
146 |
+
self.down = nn.ModuleList()
|
147 |
+
block_in = self.ch
|
148 |
+
for i_level in range(self.num_resolutions):
|
149 |
+
block = nn.ModuleList()
|
150 |
+
attn = nn.ModuleList()
|
151 |
+
block_in = ch * in_ch_mult[i_level]
|
152 |
+
block_out = ch * ch_mult[i_level]
|
153 |
+
for _ in range(self.num_res_blocks):
|
154 |
+
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
155 |
+
block_in = block_out
|
156 |
+
down = nn.Module()
|
157 |
+
down.block = block
|
158 |
+
down.attn = attn
|
159 |
+
if i_level != self.num_resolutions - 1:
|
160 |
+
down.downsample = Downsample(block_in)
|
161 |
+
curr_res = curr_res // 2
|
162 |
+
self.down.append(down)
|
163 |
+
|
164 |
+
# middle
|
165 |
+
self.mid = nn.Module()
|
166 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
167 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
168 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
169 |
+
|
170 |
+
# end
|
171 |
+
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
172 |
+
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
|
173 |
+
|
174 |
+
def forward(self, x: Tensor) -> Tensor:
|
175 |
+
# downsampling
|
176 |
+
hs = [self.conv_in(x)]
|
177 |
+
for i_level in range(self.num_resolutions):
|
178 |
+
for i_block in range(self.num_res_blocks):
|
179 |
+
h = self.down[i_level].block[i_block](hs[-1])
|
180 |
+
if len(self.down[i_level].attn) > 0:
|
181 |
+
h = self.down[i_level].attn[i_block](h)
|
182 |
+
hs.append(h)
|
183 |
+
if i_level != self.num_resolutions - 1:
|
184 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
185 |
+
|
186 |
+
# middle
|
187 |
+
h = hs[-1]
|
188 |
+
h = self.mid.block_1(h)
|
189 |
+
h = self.mid.attn_1(h)
|
190 |
+
h = self.mid.block_2(h)
|
191 |
+
# end
|
192 |
+
h = self.norm_out(h)
|
193 |
+
h = swish(h)
|
194 |
+
h = self.conv_out(h)
|
195 |
+
return h
|
196 |
+
|
197 |
+
|
198 |
+
class Decoder(nn.Module):
|
199 |
+
def __init__(
|
200 |
+
self,
|
201 |
+
ch: int,
|
202 |
+
out_ch: int,
|
203 |
+
ch_mult: list[int],
|
204 |
+
num_res_blocks: int,
|
205 |
+
in_channels: int,
|
206 |
+
resolution: int,
|
207 |
+
z_channels: int,
|
208 |
+
):
|
209 |
+
super().__init__()
|
210 |
+
self.ch = ch
|
211 |
+
self.num_resolutions = len(ch_mult)
|
212 |
+
self.num_res_blocks = num_res_blocks
|
213 |
+
self.resolution = resolution
|
214 |
+
self.in_channels = in_channels
|
215 |
+
self.ffactor = 2 ** (self.num_resolutions - 1)
|
216 |
+
|
217 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
218 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
219 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
220 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
221 |
+
|
222 |
+
# z to block_in
|
223 |
+
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
224 |
+
|
225 |
+
# middle
|
226 |
+
self.mid = nn.Module()
|
227 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
228 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
229 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
230 |
+
|
231 |
+
# upsampling
|
232 |
+
self.up = nn.ModuleList()
|
233 |
+
for i_level in reversed(range(self.num_resolutions)):
|
234 |
+
block = nn.ModuleList()
|
235 |
+
attn = nn.ModuleList()
|
236 |
+
block_out = ch * ch_mult[i_level]
|
237 |
+
for _ in range(self.num_res_blocks + 1):
|
238 |
+
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
239 |
+
block_in = block_out
|
240 |
+
up = nn.Module()
|
241 |
+
up.block = block
|
242 |
+
up.attn = attn
|
243 |
+
if i_level != 0:
|
244 |
+
up.upsample = Upsample(block_in)
|
245 |
+
curr_res = curr_res * 2
|
246 |
+
self.up.insert(0, up) # prepend to get consistent order
|
247 |
+
|
248 |
+
# end
|
249 |
+
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
250 |
+
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
251 |
+
|
252 |
+
def forward(self, z: Tensor) -> Tensor:
|
253 |
+
# z to block_in
|
254 |
+
h = self.conv_in(z)
|
255 |
+
|
256 |
+
# middle
|
257 |
+
h = self.mid.block_1(h)
|
258 |
+
h = self.mid.attn_1(h)
|
259 |
+
h = self.mid.block_2(h)
|
260 |
+
|
261 |
+
# upsampling
|
262 |
+
for i_level in reversed(range(self.num_resolutions)):
|
263 |
+
for i_block in range(self.num_res_blocks + 1):
|
264 |
+
h = self.up[i_level].block[i_block](h)
|
265 |
+
if len(self.up[i_level].attn) > 0:
|
266 |
+
h = self.up[i_level].attn[i_block](h)
|
267 |
+
if i_level != 0:
|
268 |
+
h = self.up[i_level].upsample(h)
|
269 |
+
|
270 |
+
# end
|
271 |
+
h = self.norm_out(h)
|
272 |
+
h = swish(h)
|
273 |
+
h = self.conv_out(h)
|
274 |
+
return h
|
275 |
+
|
276 |
+
|
277 |
+
class DiagonalGaussian(nn.Module):
|
278 |
+
def __init__(self, sample: bool = True, chunk_dim: int = 1):
|
279 |
+
super().__init__()
|
280 |
+
self.sample = sample
|
281 |
+
self.chunk_dim = chunk_dim
|
282 |
+
|
283 |
+
def forward(self, z: Tensor) -> Tensor:
|
284 |
+
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
|
285 |
+
if self.sample:
|
286 |
+
std = torch.exp(0.5 * logvar)
|
287 |
+
return mean + std * torch.randn_like(mean)
|
288 |
+
else:
|
289 |
+
return mean
|
290 |
+
|
291 |
+
|
292 |
+
class AutoEncoder(nn.Module):
|
293 |
+
def __init__(self, params: AutoEncoderParams):
|
294 |
+
super().__init__()
|
295 |
+
self.encoder = Encoder(
|
296 |
+
resolution=params.resolution,
|
297 |
+
in_channels=params.in_channels,
|
298 |
+
ch=params.ch,
|
299 |
+
ch_mult=params.ch_mult,
|
300 |
+
num_res_blocks=params.num_res_blocks,
|
301 |
+
z_channels=params.z_channels,
|
302 |
+
)
|
303 |
+
self.decoder = Decoder(
|
304 |
+
resolution=params.resolution,
|
305 |
+
in_channels=params.in_channels,
|
306 |
+
ch=params.ch,
|
307 |
+
out_ch=params.out_ch,
|
308 |
+
ch_mult=params.ch_mult,
|
309 |
+
num_res_blocks=params.num_res_blocks,
|
310 |
+
z_channels=params.z_channels,
|
311 |
+
)
|
312 |
+
self.reg = DiagonalGaussian()
|
313 |
+
|
314 |
+
self.scale_factor = params.scale_factor
|
315 |
+
self.shift_factor = params.shift_factor
|
316 |
+
|
317 |
+
def encode(self, x: Tensor) -> Tensor:
|
318 |
+
z = self.reg(self.encoder(x))
|
319 |
+
z = self.scale_factor * (z - self.shift_factor)
|
320 |
+
return z
|
321 |
+
|
322 |
+
def decode(self, z: Tensor) -> Tensor:
|
323 |
+
z = z / self.scale_factor + self.shift_factor
|
324 |
+
return self.decoder(z)
|
325 |
+
|
326 |
+
def forward(self, x: Tensor) -> Tensor:
|
327 |
+
return self.decode(self.encode(x))
|
uno/flux/modules/conditioner.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
|
2 |
+
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.
|
3 |
+
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from torch import Tensor, nn
|
17 |
+
from transformers import (CLIPTextModel, CLIPTokenizer, T5EncoderModel,
|
18 |
+
T5Tokenizer)
|
19 |
+
|
20 |
+
|
21 |
+
class HFEmbedder(nn.Module):
|
22 |
+
def __init__(self, version: str, max_length: int, **hf_kwargs):
|
23 |
+
super().__init__()
|
24 |
+
self.is_clip = version.startswith("openai")
|
25 |
+
self.max_length = max_length
|
26 |
+
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
|
27 |
+
|
28 |
+
if self.is_clip:
|
29 |
+
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
|
30 |
+
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
|
31 |
+
else:
|
32 |
+
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
|
33 |
+
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
|
34 |
+
|
35 |
+
self.hf_module = self.hf_module.eval().requires_grad_(False)
|
36 |
+
|
37 |
+
def forward(self, text: list[str]) -> Tensor:
|
38 |
+
batch_encoding = self.tokenizer(
|
39 |
+
text,
|
40 |
+
truncation=True,
|
41 |
+
max_length=self.max_length,
|
42 |
+
return_length=False,
|
43 |
+
return_overflowing_tokens=False,
|
44 |
+
padding="max_length",
|
45 |
+
return_tensors="pt",
|
46 |
+
)
|
47 |
+
|
48 |
+
outputs = self.hf_module(
|
49 |
+
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
|
50 |
+
attention_mask=None,
|
51 |
+
output_hidden_states=False,
|
52 |
+
)
|
53 |
+
return outputs[self.output_key]
|
uno/flux/modules/layers.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
|
2 |
+
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.
|
3 |
+
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import math
|
17 |
+
from dataclasses import dataclass
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from einops import rearrange
|
21 |
+
from torch import Tensor, nn
|
22 |
+
|
23 |
+
from ..math import attention, rope
|
24 |
+
import torch.nn.functional as F
|
25 |
+
|
26 |
+
class EmbedND(nn.Module):
|
27 |
+
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
|
28 |
+
super().__init__()
|
29 |
+
self.dim = dim
|
30 |
+
self.theta = theta
|
31 |
+
self.axes_dim = axes_dim
|
32 |
+
|
33 |
+
def forward(self, ids: Tensor) -> Tensor:
|
34 |
+
n_axes = ids.shape[-1]
|
35 |
+
emb = torch.cat(
|
36 |
+
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
37 |
+
dim=-3,
|
38 |
+
)
|
39 |
+
|
40 |
+
return emb.unsqueeze(1)
|
41 |
+
|
42 |
+
|
43 |
+
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
44 |
+
"""
|
45 |
+
Create sinusoidal timestep embeddings.
|
46 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
47 |
+
These may be fractional.
|
48 |
+
:param dim: the dimension of the output.
|
49 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
50 |
+
:return: an (N, D) Tensor of positional embeddings.
|
51 |
+
"""
|
52 |
+
t = time_factor * t
|
53 |
+
half = dim // 2
|
54 |
+
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
55 |
+
t.device
|
56 |
+
)
|
57 |
+
|
58 |
+
args = t[:, None].float() * freqs[None]
|
59 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
60 |
+
if dim % 2:
|
61 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
62 |
+
if torch.is_floating_point(t):
|
63 |
+
embedding = embedding.to(t)
|
64 |
+
return embedding
|
65 |
+
|
66 |
+
|
67 |
+
class MLPEmbedder(nn.Module):
|
68 |
+
def __init__(self, in_dim: int, hidden_dim: int):
|
69 |
+
super().__init__()
|
70 |
+
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
|
71 |
+
self.silu = nn.SiLU()
|
72 |
+
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
|
73 |
+
|
74 |
+
def forward(self, x: Tensor) -> Tensor:
|
75 |
+
return self.out_layer(self.silu(self.in_layer(x)))
|
76 |
+
|
77 |
+
|
78 |
+
class RMSNorm(torch.nn.Module):
|
79 |
+
def __init__(self, dim: int):
|
80 |
+
super().__init__()
|
81 |
+
self.scale = nn.Parameter(torch.ones(dim))
|
82 |
+
|
83 |
+
def forward(self, x: Tensor):
|
84 |
+
x_dtype = x.dtype
|
85 |
+
x = x.float()
|
86 |
+
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
|
87 |
+
return (x * rrms).to(dtype=x_dtype) * self.scale
|
88 |
+
|
89 |
+
|
90 |
+
class QKNorm(torch.nn.Module):
|
91 |
+
def __init__(self, dim: int):
|
92 |
+
super().__init__()
|
93 |
+
self.query_norm = RMSNorm(dim)
|
94 |
+
self.key_norm = RMSNorm(dim)
|
95 |
+
|
96 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
|
97 |
+
q = self.query_norm(q)
|
98 |
+
k = self.key_norm(k)
|
99 |
+
return q.to(v), k.to(v)
|
100 |
+
|
101 |
+
class LoRALinearLayer(nn.Module):
|
102 |
+
def __init__(self, in_features, out_features, rank=4, network_alpha=None, device=None, dtype=None):
|
103 |
+
super().__init__()
|
104 |
+
|
105 |
+
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
|
106 |
+
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
|
107 |
+
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
|
108 |
+
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
|
109 |
+
self.network_alpha = network_alpha
|
110 |
+
self.rank = rank
|
111 |
+
|
112 |
+
nn.init.normal_(self.down.weight, std=1 / rank)
|
113 |
+
nn.init.zeros_(self.up.weight)
|
114 |
+
|
115 |
+
def forward(self, hidden_states):
|
116 |
+
orig_dtype = hidden_states.dtype
|
117 |
+
dtype = self.down.weight.dtype
|
118 |
+
|
119 |
+
down_hidden_states = self.down(hidden_states.to(dtype))
|
120 |
+
up_hidden_states = self.up(down_hidden_states)
|
121 |
+
|
122 |
+
if self.network_alpha is not None:
|
123 |
+
up_hidden_states *= self.network_alpha / self.rank
|
124 |
+
|
125 |
+
return up_hidden_states.to(orig_dtype)
|
126 |
+
|
127 |
+
class FLuxSelfAttnProcessor:
|
128 |
+
def __call__(self, attn, x, pe, **attention_kwargs):
|
129 |
+
qkv = attn.qkv(x)
|
130 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
131 |
+
q, k = attn.norm(q, k, v)
|
132 |
+
x = attention(q, k, v, pe=pe)
|
133 |
+
x = attn.proj(x)
|
134 |
+
return x
|
135 |
+
|
136 |
+
class LoraFluxAttnProcessor(nn.Module):
|
137 |
+
|
138 |
+
def __init__(self, dim: int, rank=4, network_alpha=None, lora_weight=1):
|
139 |
+
super().__init__()
|
140 |
+
self.qkv_lora = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
|
141 |
+
self.proj_lora = LoRALinearLayer(dim, dim, rank, network_alpha)
|
142 |
+
self.lora_weight = lora_weight
|
143 |
+
|
144 |
+
|
145 |
+
def __call__(self, attn, x, pe, **attention_kwargs):
|
146 |
+
qkv = attn.qkv(x) + self.qkv_lora(x) * self.lora_weight
|
147 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
148 |
+
q, k = attn.norm(q, k, v)
|
149 |
+
x = attention(q, k, v, pe=pe)
|
150 |
+
x = attn.proj(x) + self.proj_lora(x) * self.lora_weight
|
151 |
+
return x
|
152 |
+
|
153 |
+
class SelfAttention(nn.Module):
|
154 |
+
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
|
155 |
+
super().__init__()
|
156 |
+
self.num_heads = num_heads
|
157 |
+
head_dim = dim // num_heads
|
158 |
+
|
159 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
160 |
+
self.norm = QKNorm(head_dim)
|
161 |
+
self.proj = nn.Linear(dim, dim)
|
162 |
+
def forward():
|
163 |
+
pass
|
164 |
+
|
165 |
+
|
166 |
+
@dataclass
|
167 |
+
class ModulationOut:
|
168 |
+
shift: Tensor
|
169 |
+
scale: Tensor
|
170 |
+
gate: Tensor
|
171 |
+
|
172 |
+
|
173 |
+
class Modulation(nn.Module):
|
174 |
+
def __init__(self, dim: int, double: bool):
|
175 |
+
super().__init__()
|
176 |
+
self.is_double = double
|
177 |
+
self.multiplier = 6 if double else 3
|
178 |
+
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
179 |
+
|
180 |
+
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
|
181 |
+
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
182 |
+
|
183 |
+
return (
|
184 |
+
ModulationOut(*out[:3]),
|
185 |
+
ModulationOut(*out[3:]) if self.is_double else None,
|
186 |
+
)
|
187 |
+
|
188 |
+
class DoubleStreamBlockLoraProcessor(nn.Module):
|
189 |
+
def __init__(self, dim: int, rank=4, network_alpha=None, lora_weight=1):
|
190 |
+
super().__init__()
|
191 |
+
self.qkv_lora1 = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
|
192 |
+
self.proj_lora1 = LoRALinearLayer(dim, dim, rank, network_alpha)
|
193 |
+
self.qkv_lora2 = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
|
194 |
+
self.proj_lora2 = LoRALinearLayer(dim, dim, rank, network_alpha)
|
195 |
+
self.lora_weight = lora_weight
|
196 |
+
|
197 |
+
def forward(self, attn, img, txt, vec, pe, **attention_kwargs):
|
198 |
+
img_mod1, img_mod2 = attn.img_mod(vec)
|
199 |
+
txt_mod1, txt_mod2 = attn.txt_mod(vec)
|
200 |
+
|
201 |
+
# prepare image for attention
|
202 |
+
img_modulated = attn.img_norm1(img)
|
203 |
+
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
204 |
+
img_qkv = attn.img_attn.qkv(img_modulated) + self.qkv_lora1(img_modulated) * self.lora_weight
|
205 |
+
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
|
206 |
+
img_q, img_k = attn.img_attn.norm(img_q, img_k, img_v)
|
207 |
+
|
208 |
+
# prepare txt for attention
|
209 |
+
txt_modulated = attn.txt_norm1(txt)
|
210 |
+
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
211 |
+
txt_qkv = attn.txt_attn.qkv(txt_modulated) + self.qkv_lora2(txt_modulated) * self.lora_weight
|
212 |
+
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
|
213 |
+
txt_q, txt_k = attn.txt_attn.norm(txt_q, txt_k, txt_v)
|
214 |
+
|
215 |
+
# run actual attention
|
216 |
+
q = torch.cat((txt_q, img_q), dim=2)
|
217 |
+
k = torch.cat((txt_k, img_k), dim=2)
|
218 |
+
v = torch.cat((txt_v, img_v), dim=2)
|
219 |
+
|
220 |
+
attn1 = attention(q, k, v, pe=pe)
|
221 |
+
txt_attn, img_attn = attn1[:, : txt.shape[1]], attn1[:, txt.shape[1] :]
|
222 |
+
|
223 |
+
# calculate the img bloks
|
224 |
+
img = img + img_mod1.gate * (attn.img_attn.proj(img_attn) + self.proj_lora1(img_attn) * self.lora_weight)
|
225 |
+
img = img + img_mod2.gate * attn.img_mlp((1 + img_mod2.scale) * attn.img_norm2(img) + img_mod2.shift)
|
226 |
+
|
227 |
+
# calculate the txt bloks
|
228 |
+
txt = txt + txt_mod1.gate * (attn.txt_attn.proj(txt_attn) + self.proj_lora2(txt_attn) * self.lora_weight)
|
229 |
+
txt = txt + txt_mod2.gate * attn.txt_mlp((1 + txt_mod2.scale) * attn.txt_norm2(txt) + txt_mod2.shift)
|
230 |
+
return img, txt
|
231 |
+
|
232 |
+
class DoubleStreamBlockProcessor:
|
233 |
+
def __call__(self, attn, img, txt, vec, pe, **attention_kwargs):
|
234 |
+
img_mod1, img_mod2 = attn.img_mod(vec)
|
235 |
+
txt_mod1, txt_mod2 = attn.txt_mod(vec)
|
236 |
+
|
237 |
+
# prepare image for attention
|
238 |
+
img_modulated = attn.img_norm1(img)
|
239 |
+
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
240 |
+
img_qkv = attn.img_attn.qkv(img_modulated)
|
241 |
+
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim)
|
242 |
+
img_q, img_k = attn.img_attn.norm(img_q, img_k, img_v)
|
243 |
+
|
244 |
+
# prepare txt for attention
|
245 |
+
txt_modulated = attn.txt_norm1(txt)
|
246 |
+
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
247 |
+
txt_qkv = attn.txt_attn.qkv(txt_modulated)
|
248 |
+
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim)
|
249 |
+
txt_q, txt_k = attn.txt_attn.norm(txt_q, txt_k, txt_v)
|
250 |
+
|
251 |
+
# run actual attention
|
252 |
+
q = torch.cat((txt_q, img_q), dim=2)
|
253 |
+
k = torch.cat((txt_k, img_k), dim=2)
|
254 |
+
v = torch.cat((txt_v, img_v), dim=2)
|
255 |
+
|
256 |
+
attn1 = attention(q, k, v, pe=pe)
|
257 |
+
txt_attn, img_attn = attn1[:, : txt.shape[1]], attn1[:, txt.shape[1] :]
|
258 |
+
|
259 |
+
# calculate the img bloks
|
260 |
+
img = img + img_mod1.gate * attn.img_attn.proj(img_attn)
|
261 |
+
img = img + img_mod2.gate * attn.img_mlp((1 + img_mod2.scale) * attn.img_norm2(img) + img_mod2.shift)
|
262 |
+
|
263 |
+
# calculate the txt bloks
|
264 |
+
txt = txt + txt_mod1.gate * attn.txt_attn.proj(txt_attn)
|
265 |
+
txt = txt + txt_mod2.gate * attn.txt_mlp((1 + txt_mod2.scale) * attn.txt_norm2(txt) + txt_mod2.shift)
|
266 |
+
return img, txt
|
267 |
+
|
268 |
+
class DoubleStreamBlock(nn.Module):
|
269 |
+
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
|
270 |
+
super().__init__()
|
271 |
+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
272 |
+
self.num_heads = num_heads
|
273 |
+
self.hidden_size = hidden_size
|
274 |
+
self.head_dim = hidden_size // num_heads
|
275 |
+
|
276 |
+
self.img_mod = Modulation(hidden_size, double=True)
|
277 |
+
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
278 |
+
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
279 |
+
|
280 |
+
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
281 |
+
self.img_mlp = nn.Sequential(
|
282 |
+
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
283 |
+
nn.GELU(approximate="tanh"),
|
284 |
+
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
285 |
+
)
|
286 |
+
|
287 |
+
self.txt_mod = Modulation(hidden_size, double=True)
|
288 |
+
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
289 |
+
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
290 |
+
|
291 |
+
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
292 |
+
self.txt_mlp = nn.Sequential(
|
293 |
+
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
294 |
+
nn.GELU(approximate="tanh"),
|
295 |
+
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
296 |
+
)
|
297 |
+
processor = DoubleStreamBlockProcessor()
|
298 |
+
self.set_processor(processor)
|
299 |
+
|
300 |
+
def set_processor(self, processor) -> None:
|
301 |
+
self.processor = processor
|
302 |
+
|
303 |
+
def get_processor(self):
|
304 |
+
return self.processor
|
305 |
+
|
306 |
+
def forward(
|
307 |
+
self,
|
308 |
+
img: Tensor,
|
309 |
+
txt: Tensor,
|
310 |
+
vec: Tensor,
|
311 |
+
pe: Tensor,
|
312 |
+
image_proj: Tensor = None,
|
313 |
+
ip_scale: float =1.0,
|
314 |
+
) -> tuple[Tensor, Tensor]:
|
315 |
+
if image_proj is None:
|
316 |
+
return self.processor(self, img, txt, vec, pe)
|
317 |
+
else:
|
318 |
+
return self.processor(self, img, txt, vec, pe, image_proj, ip_scale)
|
319 |
+
|
320 |
+
|
321 |
+
class SingleStreamBlockLoraProcessor(nn.Module):
|
322 |
+
def __init__(self, dim: int, rank: int = 4, network_alpha = None, lora_weight: float = 1):
|
323 |
+
super().__init__()
|
324 |
+
self.qkv_lora = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
|
325 |
+
self.proj_lora = LoRALinearLayer(15360, dim, rank, network_alpha)
|
326 |
+
self.lora_weight = lora_weight
|
327 |
+
|
328 |
+
def forward(self, attn: nn.Module, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
|
329 |
+
|
330 |
+
mod, _ = attn.modulation(vec)
|
331 |
+
x_mod = (1 + mod.scale) * attn.pre_norm(x) + mod.shift
|
332 |
+
qkv, mlp = torch.split(attn.linear1(x_mod), [3 * attn.hidden_size, attn.mlp_hidden_dim], dim=-1)
|
333 |
+
qkv = qkv + self.qkv_lora(x_mod) * self.lora_weight
|
334 |
+
|
335 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
|
336 |
+
q, k = attn.norm(q, k, v)
|
337 |
+
|
338 |
+
# compute attention
|
339 |
+
attn_1 = attention(q, k, v, pe=pe)
|
340 |
+
|
341 |
+
# compute activation in mlp stream, cat again and run second linear layer
|
342 |
+
output = attn.linear2(torch.cat((attn_1, attn.mlp_act(mlp)), 2))
|
343 |
+
output = output + self.proj_lora(torch.cat((attn_1, attn.mlp_act(mlp)), 2)) * self.lora_weight
|
344 |
+
output = x + mod.gate * output
|
345 |
+
return output
|
346 |
+
|
347 |
+
|
348 |
+
class SingleStreamBlockProcessor:
|
349 |
+
def __call__(self, attn: nn.Module, x: Tensor, vec: Tensor, pe: Tensor, **attention_kwargs) -> Tensor:
|
350 |
+
|
351 |
+
mod, _ = attn.modulation(vec)
|
352 |
+
x_mod = (1 + mod.scale) * attn.pre_norm(x) + mod.shift
|
353 |
+
qkv, mlp = torch.split(attn.linear1(x_mod), [3 * attn.hidden_size, attn.mlp_hidden_dim], dim=-1)
|
354 |
+
|
355 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
|
356 |
+
q, k = attn.norm(q, k, v)
|
357 |
+
|
358 |
+
# compute attention
|
359 |
+
attn_1 = attention(q, k, v, pe=pe)
|
360 |
+
|
361 |
+
# compute activation in mlp stream, cat again and run second linear layer
|
362 |
+
output = attn.linear2(torch.cat((attn_1, attn.mlp_act(mlp)), 2))
|
363 |
+
output = x + mod.gate * output
|
364 |
+
return output
|
365 |
+
|
366 |
+
class SingleStreamBlock(nn.Module):
|
367 |
+
"""
|
368 |
+
A DiT block with parallel linear layers as described in
|
369 |
+
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
370 |
+
"""
|
371 |
+
|
372 |
+
def __init__(
|
373 |
+
self,
|
374 |
+
hidden_size: int,
|
375 |
+
num_heads: int,
|
376 |
+
mlp_ratio: float = 4.0,
|
377 |
+
qk_scale: float | None = None,
|
378 |
+
):
|
379 |
+
super().__init__()
|
380 |
+
self.hidden_dim = hidden_size
|
381 |
+
self.num_heads = num_heads
|
382 |
+
self.head_dim = hidden_size // num_heads
|
383 |
+
self.scale = qk_scale or self.head_dim**-0.5
|
384 |
+
|
385 |
+
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
386 |
+
# qkv and mlp_in
|
387 |
+
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
388 |
+
# proj and mlp_out
|
389 |
+
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
390 |
+
|
391 |
+
self.norm = QKNorm(self.head_dim)
|
392 |
+
|
393 |
+
self.hidden_size = hidden_size
|
394 |
+
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
395 |
+
|
396 |
+
self.mlp_act = nn.GELU(approximate="tanh")
|
397 |
+
self.modulation = Modulation(hidden_size, double=False)
|
398 |
+
|
399 |
+
processor = SingleStreamBlockProcessor()
|
400 |
+
self.set_processor(processor)
|
401 |
+
|
402 |
+
|
403 |
+
def set_processor(self, processor) -> None:
|
404 |
+
self.processor = processor
|
405 |
+
|
406 |
+
def get_processor(self):
|
407 |
+
return self.processor
|
408 |
+
|
409 |
+
def forward(
|
410 |
+
self,
|
411 |
+
x: Tensor,
|
412 |
+
vec: Tensor,
|
413 |
+
pe: Tensor,
|
414 |
+
image_proj: Tensor | None = None,
|
415 |
+
ip_scale: float = 1.0,
|
416 |
+
) -> Tensor:
|
417 |
+
if image_proj is None:
|
418 |
+
return self.processor(self, x, vec, pe)
|
419 |
+
else:
|
420 |
+
return self.processor(self, x, vec, pe, image_proj, ip_scale)
|
421 |
+
|
422 |
+
|
423 |
+
|
424 |
+
class LastLayer(nn.Module):
|
425 |
+
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
426 |
+
super().__init__()
|
427 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
428 |
+
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
429 |
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
430 |
+
|
431 |
+
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
432 |
+
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
433 |
+
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
434 |
+
x = self.linear(x)
|
435 |
+
return x
|
uno/flux/pipeline.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
|
2 |
+
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.
|
3 |
+
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from typing import Literal
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from einops import rearrange
|
21 |
+
from PIL import ExifTags, Image
|
22 |
+
import torchvision.transforms.functional as TVF
|
23 |
+
|
24 |
+
from uno.flux.modules.layers import (
|
25 |
+
DoubleStreamBlockLoraProcessor,
|
26 |
+
DoubleStreamBlockProcessor,
|
27 |
+
SingleStreamBlockLoraProcessor,
|
28 |
+
SingleStreamBlockProcessor,
|
29 |
+
)
|
30 |
+
from uno.flux.sampling import denoise, get_noise, get_schedule, prepare, prepare_multi_ip, unpack
|
31 |
+
from uno.flux.util import (
|
32 |
+
get_lora_rank,
|
33 |
+
load_ae,
|
34 |
+
load_checkpoint,
|
35 |
+
load_clip,
|
36 |
+
load_flow_model,
|
37 |
+
load_flow_model_only_lora,
|
38 |
+
load_flow_model_quintized,
|
39 |
+
load_t5,
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
def find_nearest_scale(image_h, image_w, predefined_scales):
|
44 |
+
"""
|
45 |
+
根据图片的高度和宽度,找到最近的预定义尺度。
|
46 |
+
|
47 |
+
:param image_h: 图片的高度
|
48 |
+
:param image_w: 图片的宽度
|
49 |
+
:param predefined_scales: 预定义尺度列表 [(h1, w1), (h2, w2), ...]
|
50 |
+
:return: 最近的预定义尺度 (h, w)
|
51 |
+
"""
|
52 |
+
# 计算输入图片的长宽比
|
53 |
+
image_ratio = image_h / image_w
|
54 |
+
|
55 |
+
# 初始化变量以存储最小差异和最近的尺度
|
56 |
+
min_diff = float('inf')
|
57 |
+
nearest_scale = None
|
58 |
+
|
59 |
+
# 遍历所有预定义尺度,找到与输入图片长宽比最接近的尺度
|
60 |
+
for scale_h, scale_w in predefined_scales:
|
61 |
+
predefined_ratio = scale_h / scale_w
|
62 |
+
diff = abs(predefined_ratio - image_ratio)
|
63 |
+
|
64 |
+
if diff < min_diff:
|
65 |
+
min_diff = diff
|
66 |
+
nearest_scale = (scale_h, scale_w)
|
67 |
+
|
68 |
+
return nearest_scale
|
69 |
+
|
70 |
+
def preprocess_ref(raw_image: Image.Image, long_size: int = 512):
|
71 |
+
# 获取原始图像的宽度和高度
|
72 |
+
image_w, image_h = raw_image.size
|
73 |
+
|
74 |
+
# 计算长边和短边
|
75 |
+
if image_w >= image_h:
|
76 |
+
new_w = long_size
|
77 |
+
new_h = int((long_size / image_w) * image_h)
|
78 |
+
else:
|
79 |
+
new_h = long_size
|
80 |
+
new_w = int((long_size / image_h) * image_w)
|
81 |
+
|
82 |
+
# 按新的宽高进行等比例缩放
|
83 |
+
raw_image = raw_image.resize((new_w, new_h), resample=Image.LANCZOS)
|
84 |
+
target_w = new_w // 16 * 16
|
85 |
+
target_h = new_h // 16 * 16
|
86 |
+
|
87 |
+
# 计算裁剪的起始坐标以实现中心裁剪
|
88 |
+
left = (new_w - target_w) // 2
|
89 |
+
top = (new_h - target_h) // 2
|
90 |
+
right = left + target_w
|
91 |
+
bottom = top + target_h
|
92 |
+
|
93 |
+
# 进行中心裁剪
|
94 |
+
raw_image = raw_image.crop((left, top, right, bottom))
|
95 |
+
|
96 |
+
# 转换为 RGB 模式
|
97 |
+
raw_image = raw_image.convert("RGB")
|
98 |
+
return raw_image
|
99 |
+
|
100 |
+
class UNOPipeline:
|
101 |
+
def __init__(
|
102 |
+
self,
|
103 |
+
model_type: str,
|
104 |
+
device: torch.device,
|
105 |
+
offload: bool = False,
|
106 |
+
only_lora: bool = False,
|
107 |
+
lora_rank: int = 16
|
108 |
+
):
|
109 |
+
self.device = device
|
110 |
+
self.offload = offload
|
111 |
+
self.model_type = model_type
|
112 |
+
|
113 |
+
self.clip = load_clip(self.device)
|
114 |
+
self.t5 = load_t5(self.device, max_length=512)
|
115 |
+
self.ae = load_ae(model_type, device="cpu" if offload else self.device)
|
116 |
+
if "fp8" in model_type:
|
117 |
+
self.model = load_flow_model_quintized(model_type, device="cpu" if offload else self.device)
|
118 |
+
elif only_lora:
|
119 |
+
self.model = load_flow_model_only_lora(
|
120 |
+
model_type, device="cpu" if offload else self.device, lora_rank=lora_rank
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
self.model = load_flow_model(model_type, device="cpu" if offload else self.device)
|
124 |
+
|
125 |
+
|
126 |
+
def load_ckpt(self, ckpt_path):
|
127 |
+
if ckpt_path is not None:
|
128 |
+
from safetensors.torch import load_file as load_sft
|
129 |
+
print("Loading checkpoint to replace old keys")
|
130 |
+
# load_sft doesn't support torch.device
|
131 |
+
if ckpt_path.endswith('safetensors'):
|
132 |
+
sd = load_sft(ckpt_path, device='cpu')
|
133 |
+
missing, unexpected = self.model.load_state_dict(sd, strict=False, assign=True)
|
134 |
+
else:
|
135 |
+
dit_state = torch.load(ckpt_path, map_location='cpu')
|
136 |
+
sd = {}
|
137 |
+
for k in dit_state.keys():
|
138 |
+
sd[k.replace('module.','')] = dit_state[k]
|
139 |
+
missing, unexpected = self.model.load_state_dict(sd, strict=False, assign=True)
|
140 |
+
self.model.to(str(self.device))
|
141 |
+
print(f"missing keys: {missing}\n\n\n\n\nunexpected keys: {unexpected}")
|
142 |
+
|
143 |
+
def set_lora(self, local_path: str = None, repo_id: str = None,
|
144 |
+
name: str = None, lora_weight: int = 0.7):
|
145 |
+
checkpoint = load_checkpoint(local_path, repo_id, name)
|
146 |
+
self.update_model_with_lora(checkpoint, lora_weight)
|
147 |
+
|
148 |
+
def set_lora_from_collection(self, lora_type: str = "realism", lora_weight: int = 0.7):
|
149 |
+
checkpoint = load_checkpoint(
|
150 |
+
None, self.hf_lora_collection, self.lora_types_to_names[lora_type]
|
151 |
+
)
|
152 |
+
self.update_model_with_lora(checkpoint, lora_weight)
|
153 |
+
|
154 |
+
def update_model_with_lora(self, checkpoint, lora_weight):
|
155 |
+
rank = get_lora_rank(checkpoint)
|
156 |
+
lora_attn_procs = {}
|
157 |
+
|
158 |
+
for name, _ in self.model.attn_processors.items():
|
159 |
+
lora_state_dict = {}
|
160 |
+
for k in checkpoint.keys():
|
161 |
+
if name in k:
|
162 |
+
lora_state_dict[k[len(name) + 1:]] = checkpoint[k] * lora_weight
|
163 |
+
|
164 |
+
if len(lora_state_dict):
|
165 |
+
if name.startswith("single_blocks"):
|
166 |
+
lora_attn_procs[name] = SingleStreamBlockLoraProcessor(dim=3072, rank=rank)
|
167 |
+
else:
|
168 |
+
lora_attn_procs[name] = DoubleStreamBlockLoraProcessor(dim=3072, rank=rank)
|
169 |
+
lora_attn_procs[name].load_state_dict(lora_state_dict)
|
170 |
+
lora_attn_procs[name].to(self.device)
|
171 |
+
else:
|
172 |
+
if name.startswith("single_blocks"):
|
173 |
+
lora_attn_procs[name] = SingleStreamBlockProcessor()
|
174 |
+
else:
|
175 |
+
lora_attn_procs[name] = DoubleStreamBlockProcessor()
|
176 |
+
|
177 |
+
self.model.set_attn_processor(lora_attn_procs)
|
178 |
+
|
179 |
+
|
180 |
+
def __call__(
|
181 |
+
self,
|
182 |
+
prompt: str,
|
183 |
+
width: int = 512,
|
184 |
+
height: int = 512,
|
185 |
+
guidance: float = 4,
|
186 |
+
num_steps: int = 50,
|
187 |
+
seed: int = 123456789,
|
188 |
+
true_gs: float = 3,
|
189 |
+
neg_prompt: str = '',
|
190 |
+
neg_image_prompt: Image = None,
|
191 |
+
timestep_to_start_cfg: int = 0,
|
192 |
+
**kwargs
|
193 |
+
):
|
194 |
+
width = 16 * (width // 16)
|
195 |
+
height = 16 * (height // 16)
|
196 |
+
|
197 |
+
return self.forward(
|
198 |
+
prompt,
|
199 |
+
width,
|
200 |
+
height,
|
201 |
+
guidance,
|
202 |
+
num_steps,
|
203 |
+
seed,
|
204 |
+
timestep_to_start_cfg=timestep_to_start_cfg,
|
205 |
+
true_gs=true_gs,
|
206 |
+
neg_prompt=neg_prompt,
|
207 |
+
**kwargs
|
208 |
+
)
|
209 |
+
|
210 |
+
@torch.inference_mode()
|
211 |
+
def gradio_generate(
|
212 |
+
self,
|
213 |
+
prompt: str,
|
214 |
+
width: int,
|
215 |
+
height: int,
|
216 |
+
guidance: float,
|
217 |
+
num_steps: int,
|
218 |
+
seed: int,
|
219 |
+
ref_long_side: int,
|
220 |
+
image_prompt1: Image.Image,
|
221 |
+
image_prompt2: Image.Image,
|
222 |
+
image_prompt3: Image.Image,
|
223 |
+
image_prompt4: Image.Image,
|
224 |
+
):
|
225 |
+
ref_imgs = [image_prompt1, image_prompt2, image_prompt3, image_prompt4]
|
226 |
+
ref_imgs = [img for img in ref_imgs if isinstance(img, Image.Image)]
|
227 |
+
ref_imgs = [preprocess_ref(img, ref_long_side) for img in ref_imgs]
|
228 |
+
|
229 |
+
seed = seed if seed != -1 else torch.randint(0, 10 ** 8, (1,)).item()
|
230 |
+
|
231 |
+
img = self(prompt=prompt, width=width, height=height, guidance=guidance,
|
232 |
+
num_steps=num_steps, seed=seed, ref_imgs=ref_imgs)
|
233 |
+
|
234 |
+
filename = f"output/gradio/{seed}_{prompt[:20]}.png"
|
235 |
+
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
236 |
+
exif_data = Image.Exif()
|
237 |
+
exif_data[ExifTags.Base.Make] = "UNO"
|
238 |
+
exif_data[ExifTags.Base.Model] = self.model_type
|
239 |
+
info = f"{prompt=}, {seed=}, {width=}, {height=}, {guidance=}, {num_steps=}"
|
240 |
+
exif_data[ExifTags.Base.ImageDescription] = info
|
241 |
+
img.save(filename, format="png", exif=exif_data)
|
242 |
+
return img, filename
|
243 |
+
|
244 |
+
@torch.inference_mode
|
245 |
+
def forward(
|
246 |
+
self,
|
247 |
+
prompt: str,
|
248 |
+
width: int,
|
249 |
+
height: int,
|
250 |
+
guidance: float,
|
251 |
+
num_steps: int,
|
252 |
+
seed: int,
|
253 |
+
timestep_to_start_cfg: int = 1e5, # TODO 没用,删除
|
254 |
+
true_gs: float = 3.5,
|
255 |
+
neg_prompt: str = "",
|
256 |
+
ref_imgs: list[Image.Image] | None = None,
|
257 |
+
pe: Literal['d', 'h', 'w', 'o'] = 'd',
|
258 |
+
):
|
259 |
+
x = get_noise(
|
260 |
+
1, height, width, device=self.device,
|
261 |
+
dtype=torch.bfloat16, seed=seed
|
262 |
+
)
|
263 |
+
timesteps = get_schedule(
|
264 |
+
num_steps,
|
265 |
+
(width // 8) * (height // 8) // (16 * 16),
|
266 |
+
shift=True,
|
267 |
+
)
|
268 |
+
if self.offload:
|
269 |
+
self.ae.encoder = self.ae.encoder.to(self.device)
|
270 |
+
x_1_refs = [
|
271 |
+
self.ae.encode(
|
272 |
+
(TVF.to_tensor(ref_img) * 2.0 - 1.0)
|
273 |
+
.unsqueeze(0).to(self.device, torch.float32)
|
274 |
+
).to(torch.bfloat16)
|
275 |
+
for ref_img in ref_imgs
|
276 |
+
]
|
277 |
+
|
278 |
+
if self.offload:
|
279 |
+
self.ae.encoder = self.offload_model_to_cpu(self.ae.encoder)
|
280 |
+
self.t5, self.clip = self.t5.to(self.device), self.clip.to(self.device)
|
281 |
+
inp_cond = prepare_multi_ip(
|
282 |
+
t5=self.t5, clip=self.clip,
|
283 |
+
img=x,
|
284 |
+
prompt=prompt, ref_imgs=x_1_refs, pe=pe
|
285 |
+
)
|
286 |
+
neg_inp_cond = prepare_multi_ip(
|
287 |
+
t5=self.t5, clip=self.clip,
|
288 |
+
img=x,
|
289 |
+
prompt=neg_prompt, ref_imgs=x_1_refs, pe=pe
|
290 |
+
)
|
291 |
+
|
292 |
+
if self.offload:
|
293 |
+
self.offload_model_to_cpu(self.t5, self.clip)
|
294 |
+
self.model = self.model.to(self.device)
|
295 |
+
|
296 |
+
x = denoise(
|
297 |
+
self.model,
|
298 |
+
**inp_cond,
|
299 |
+
timesteps=timesteps,
|
300 |
+
guidance=guidance,
|
301 |
+
timestep_to_start_cfg=timestep_to_start_cfg,
|
302 |
+
neg_txt=neg_inp_cond['txt'],
|
303 |
+
neg_txt_ids=neg_inp_cond['txt_ids'],
|
304 |
+
neg_vec=neg_inp_cond['vec'],
|
305 |
+
true_gs=true_gs,
|
306 |
+
)
|
307 |
+
|
308 |
+
if self.offload:
|
309 |
+
self.offload_model_to_cpu(self.model)
|
310 |
+
self.ae.decoder.to(x.device)
|
311 |
+
x = unpack(x.float(), height, width)
|
312 |
+
x = self.ae.decode(x)
|
313 |
+
self.offload_model_to_cpu(self.ae.decoder)
|
314 |
+
|
315 |
+
x1 = x.clamp(-1, 1)
|
316 |
+
x1 = rearrange(x1[-1], "c h w -> h w c")
|
317 |
+
output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())
|
318 |
+
return output_img
|
319 |
+
|
320 |
+
def offload_model_to_cpu(self, *models):
|
321 |
+
if not self.offload: return
|
322 |
+
for model in models:
|
323 |
+
model.cpu()
|
324 |
+
torch.cuda.empty_cache()
|
uno/flux/sampling.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
|
2 |
+
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.
|
3 |
+
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import math
|
17 |
+
from typing import Literal
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from einops import rearrange, repeat
|
21 |
+
from torch import Tensor
|
22 |
+
from tqdm import tqdm
|
23 |
+
|
24 |
+
from .model import Flux
|
25 |
+
from .modules.conditioner import HFEmbedder
|
26 |
+
|
27 |
+
|
28 |
+
def get_noise(
|
29 |
+
num_samples: int,
|
30 |
+
height: int,
|
31 |
+
width: int,
|
32 |
+
device: torch.device,
|
33 |
+
dtype: torch.dtype,
|
34 |
+
seed: int,
|
35 |
+
):
|
36 |
+
return torch.randn(
|
37 |
+
num_samples,
|
38 |
+
16,
|
39 |
+
# allow for packing
|
40 |
+
2 * math.ceil(height / 16),
|
41 |
+
2 * math.ceil(width / 16),
|
42 |
+
device=device,
|
43 |
+
dtype=dtype,
|
44 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
def prepare(
|
49 |
+
t5: HFEmbedder,
|
50 |
+
clip: HFEmbedder,
|
51 |
+
img: Tensor,
|
52 |
+
prompt: str | list[str],
|
53 |
+
ref_img: None | Tensor=None,
|
54 |
+
pe: Literal['d', 'h', 'w', 'o'] ='d'
|
55 |
+
) -> dict[str, Tensor]:
|
56 |
+
assert pe in ['d', 'h', 'w', 'o']
|
57 |
+
bs, c, h, w = img.shape
|
58 |
+
if bs == 1 and not isinstance(prompt, str):
|
59 |
+
bs = len(prompt)
|
60 |
+
|
61 |
+
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
62 |
+
if img.shape[0] == 1 and bs > 1:
|
63 |
+
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
64 |
+
|
65 |
+
img_ids = torch.zeros(h // 2, w // 2, 3)
|
66 |
+
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
67 |
+
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
68 |
+
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
69 |
+
|
70 |
+
if ref_img is not None:
|
71 |
+
_, _, ref_h, ref_w = ref_img.shape
|
72 |
+
ref_img = rearrange(ref_img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
73 |
+
if ref_img.shape[0] == 1 and bs > 1:
|
74 |
+
ref_img = repeat(ref_img, "1 ... -> bs ...", bs=bs)
|
75 |
+
ref_img_ids = torch.zeros(ref_h // 2, ref_w // 2, 3)
|
76 |
+
# img id分别在宽高偏移各自最大值
|
77 |
+
h_offset = h // 2 if pe in {'d', 'h'} else 0
|
78 |
+
w_offset = w // 2 if pe in {'d', 'w'} else 0
|
79 |
+
ref_img_ids[..., 1] = ref_img_ids[..., 1] + torch.arange(ref_h // 2)[:, None] + h_offset
|
80 |
+
ref_img_ids[..., 2] = ref_img_ids[..., 2] + torch.arange(ref_w // 2)[None, :] + w_offset
|
81 |
+
ref_img_ids = repeat(ref_img_ids, "h w c -> b (h w) c", b=bs)
|
82 |
+
|
83 |
+
if isinstance(prompt, str):
|
84 |
+
prompt = [prompt]
|
85 |
+
txt = t5(prompt)
|
86 |
+
if txt.shape[0] == 1 and bs > 1:
|
87 |
+
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
|
88 |
+
txt_ids = torch.zeros(bs, txt.shape[1], 3)
|
89 |
+
|
90 |
+
vec = clip(prompt)
|
91 |
+
if vec.shape[0] == 1 and bs > 1:
|
92 |
+
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
|
93 |
+
|
94 |
+
if ref_img is not None:
|
95 |
+
return {
|
96 |
+
"img": img,
|
97 |
+
"img_ids": img_ids.to(img.device),
|
98 |
+
"ref_img": ref_img,
|
99 |
+
"ref_img_ids": ref_img_ids.to(img.device),
|
100 |
+
"txt": txt.to(img.device),
|
101 |
+
"txt_ids": txt_ids.to(img.device),
|
102 |
+
"vec": vec.to(img.device),
|
103 |
+
}
|
104 |
+
else:
|
105 |
+
return {
|
106 |
+
"img": img,
|
107 |
+
"img_ids": img_ids.to(img.device),
|
108 |
+
"txt": txt.to(img.device),
|
109 |
+
"txt_ids": txt_ids.to(img.device),
|
110 |
+
"vec": vec.to(img.device),
|
111 |
+
}
|
112 |
+
|
113 |
+
def prepare_multi_ip(
|
114 |
+
t5: HFEmbedder,
|
115 |
+
clip: HFEmbedder,
|
116 |
+
img: Tensor,
|
117 |
+
prompt: str | list[str],
|
118 |
+
ref_imgs: list[Tensor] | None = None,
|
119 |
+
pe: Literal['d', 'h', 'w', 'o'] = 'd'
|
120 |
+
) -> dict[str, Tensor]:
|
121 |
+
assert pe in ['d', 'h', 'w', 'o']
|
122 |
+
bs, c, h, w = img.shape
|
123 |
+
if bs == 1 and not isinstance(prompt, str):
|
124 |
+
bs = len(prompt)
|
125 |
+
|
126 |
+
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
127 |
+
if img.shape[0] == 1 and bs > 1:
|
128 |
+
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
129 |
+
|
130 |
+
img_ids = torch.zeros(h // 2, w // 2, 3)
|
131 |
+
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
132 |
+
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
133 |
+
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
134 |
+
|
135 |
+
ref_img_ids = []
|
136 |
+
ref_imgs_list = []
|
137 |
+
pe_shift_w, pe_shift_h = w // 2, h // 2
|
138 |
+
for ref_img in ref_imgs:
|
139 |
+
_, _, ref_h1, ref_w1 = ref_img.shape
|
140 |
+
ref_img = rearrange(ref_img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
141 |
+
if ref_img.shape[0] == 1 and bs > 1:
|
142 |
+
ref_img = repeat(ref_img, "1 ... -> bs ...", bs=bs)
|
143 |
+
ref_img_ids1 = torch.zeros(ref_h1 // 2, ref_w1 // 2, 3)
|
144 |
+
# img id分别���宽高偏移各自最大值
|
145 |
+
h_offset = pe_shift_h if pe in {'d', 'h'} else 0
|
146 |
+
w_offset = pe_shift_w if pe in {'d', 'w'} else 0
|
147 |
+
ref_img_ids1[..., 1] = ref_img_ids1[..., 1] + torch.arange(ref_h1 // 2)[:, None] + h_offset
|
148 |
+
ref_img_ids1[..., 2] = ref_img_ids1[..., 2] + torch.arange(ref_w1 // 2)[None, :] + w_offset
|
149 |
+
ref_img_ids1 = repeat(ref_img_ids1, "h w c -> b (h w) c", b=bs)
|
150 |
+
ref_img_ids.append(ref_img_ids1)
|
151 |
+
ref_imgs_list.append(ref_img)
|
152 |
+
|
153 |
+
# 更新pe shift
|
154 |
+
pe_shift_h += ref_h1 // 2
|
155 |
+
pe_shift_w += ref_w1 // 2
|
156 |
+
|
157 |
+
if isinstance(prompt, str):
|
158 |
+
prompt = [prompt]
|
159 |
+
txt = t5(prompt)
|
160 |
+
if txt.shape[0] == 1 and bs > 1:
|
161 |
+
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
|
162 |
+
txt_ids = torch.zeros(bs, txt.shape[1], 3)
|
163 |
+
|
164 |
+
vec = clip(prompt)
|
165 |
+
if vec.shape[0] == 1 and bs > 1:
|
166 |
+
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
|
167 |
+
|
168 |
+
return {
|
169 |
+
"img": img,
|
170 |
+
"img_ids": img_ids.to(img.device),
|
171 |
+
"ref_img": tuple(ref_imgs_list),
|
172 |
+
"ref_img_ids": [ref_img_id.to(img.device) for ref_img_id in ref_img_ids],
|
173 |
+
"txt": txt.to(img.device),
|
174 |
+
"txt_ids": txt_ids.to(img.device),
|
175 |
+
"vec": vec.to(img.device),
|
176 |
+
}
|
177 |
+
|
178 |
+
|
179 |
+
def time_shift(mu: float, sigma: float, t: Tensor):
|
180 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
181 |
+
|
182 |
+
|
183 |
+
def get_lin_function(
|
184 |
+
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
|
185 |
+
):
|
186 |
+
m = (y2 - y1) / (x2 - x1)
|
187 |
+
b = y1 - m * x1
|
188 |
+
return lambda x: m * x + b
|
189 |
+
|
190 |
+
|
191 |
+
def get_schedule(
|
192 |
+
num_steps: int,
|
193 |
+
image_seq_len: int,
|
194 |
+
base_shift: float = 0.5,
|
195 |
+
max_shift: float = 1.15,
|
196 |
+
shift: bool = True,
|
197 |
+
) -> list[float]:
|
198 |
+
# extra step for zero
|
199 |
+
timesteps = torch.linspace(1, 0, num_steps + 1)
|
200 |
+
|
201 |
+
# shifting the schedule to favor high timesteps for higher signal images
|
202 |
+
if shift:
|
203 |
+
# eastimate mu based on linear estimation between two points
|
204 |
+
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
|
205 |
+
timesteps = time_shift(mu, 1.0, timesteps)
|
206 |
+
|
207 |
+
return timesteps.tolist()
|
208 |
+
|
209 |
+
|
210 |
+
def denoise(
|
211 |
+
model: Flux,
|
212 |
+
# model input
|
213 |
+
img: Tensor,
|
214 |
+
img_ids: Tensor,
|
215 |
+
txt: Tensor,
|
216 |
+
txt_ids: Tensor,
|
217 |
+
vec: Tensor,
|
218 |
+
neg_txt: Tensor,
|
219 |
+
neg_txt_ids: Tensor,
|
220 |
+
neg_vec: Tensor,
|
221 |
+
# sampling parameters
|
222 |
+
timesteps: list[float],
|
223 |
+
guidance: float = 4.0,
|
224 |
+
true_gs = 1,
|
225 |
+
timestep_to_start_cfg=0,
|
226 |
+
ref_img: Tensor=None,
|
227 |
+
ref_img_ids: Tensor=None,
|
228 |
+
):
|
229 |
+
i = 0
|
230 |
+
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
231 |
+
for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1):
|
232 |
+
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
233 |
+
pred = model(
|
234 |
+
img=img,
|
235 |
+
img_ids=img_ids,
|
236 |
+
ref_img=ref_img,
|
237 |
+
ref_img_ids=ref_img_ids,
|
238 |
+
txt=txt,
|
239 |
+
txt_ids=txt_ids,
|
240 |
+
y=vec,
|
241 |
+
timesteps=t_vec,
|
242 |
+
guidance=guidance_vec
|
243 |
+
)
|
244 |
+
if i >= timestep_to_start_cfg:
|
245 |
+
# not test
|
246 |
+
neg_pred = model(
|
247 |
+
img=img,
|
248 |
+
img_ids=img_ids,
|
249 |
+
ref_img=ref_img, # TODO: neg img embedding
|
250 |
+
ref_img_ids=ref_img_ids,
|
251 |
+
txt=neg_txt,
|
252 |
+
txt_ids=neg_txt_ids,
|
253 |
+
y=neg_vec,
|
254 |
+
timesteps=t_vec,
|
255 |
+
guidance=guidance_vec,
|
256 |
+
)
|
257 |
+
pred = neg_pred + true_gs * (pred - neg_pred)
|
258 |
+
img = img + (t_prev - t_curr) * pred
|
259 |
+
i += 1
|
260 |
+
return img
|
261 |
+
|
262 |
+
|
263 |
+
def unpack(x: Tensor, height: int, width: int) -> Tensor:
|
264 |
+
return rearrange(
|
265 |
+
x,
|
266 |
+
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
267 |
+
h=math.ceil(height / 16),
|
268 |
+
w=math.ceil(width / 16),
|
269 |
+
ph=2,
|
270 |
+
pw=2,
|
271 |
+
)
|
uno/flux/util.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
|
2 |
+
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.
|
3 |
+
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from dataclasses import dataclass
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import json
|
21 |
+
import numpy as np
|
22 |
+
from huggingface_hub import hf_hub_download
|
23 |
+
from safetensors import safe_open
|
24 |
+
from safetensors.torch import load_file as load_sft
|
25 |
+
|
26 |
+
from .model import Flux, FluxParams
|
27 |
+
from .modules.autoencoder import AutoEncoder, AutoEncoderParams
|
28 |
+
from .modules.conditioner import HFEmbedder
|
29 |
+
|
30 |
+
import re
|
31 |
+
from uno.flux.modules.layers import DoubleStreamBlockLoraProcessor, SingleStreamBlockLoraProcessor
|
32 |
+
def load_model(ckpt, device='cpu'):
|
33 |
+
if ckpt.endswith('safetensors'):
|
34 |
+
from safetensors import safe_open
|
35 |
+
pl_sd = {}
|
36 |
+
with safe_open(ckpt, framework="pt", device=device) as f:
|
37 |
+
for k in f.keys():
|
38 |
+
pl_sd[k] = f.get_tensor(k)
|
39 |
+
else:
|
40 |
+
pl_sd = torch.load(ckpt, map_location=device)
|
41 |
+
return pl_sd
|
42 |
+
|
43 |
+
def load_safetensors(path):
|
44 |
+
tensors = {}
|
45 |
+
with safe_open(path, framework="pt", device="cpu") as f:
|
46 |
+
for key in f.keys():
|
47 |
+
tensors[key] = f.get_tensor(key)
|
48 |
+
return tensors
|
49 |
+
|
50 |
+
def get_lora_rank(checkpoint):
|
51 |
+
for k in checkpoint.keys():
|
52 |
+
if k.endswith(".down.weight"):
|
53 |
+
return checkpoint[k].shape[0]
|
54 |
+
|
55 |
+
def load_checkpoint(local_path, repo_id, name):
|
56 |
+
if local_path is not None:
|
57 |
+
if '.safetensors' in local_path:
|
58 |
+
print(f"Loading .safetensors checkpoint from {local_path}")
|
59 |
+
checkpoint = load_safetensors(local_path)
|
60 |
+
else:
|
61 |
+
print(f"Loading checkpoint from {local_path}")
|
62 |
+
checkpoint = torch.load(local_path, map_location='cpu')
|
63 |
+
elif repo_id is not None and name is not None:
|
64 |
+
print(f"Loading checkpoint {name} from repo id {repo_id}")
|
65 |
+
checkpoint = load_from_repo_id(repo_id, name)
|
66 |
+
else:
|
67 |
+
raise ValueError(
|
68 |
+
"LOADING ERROR: you must specify local_path or repo_id with name in HF to download"
|
69 |
+
)
|
70 |
+
return checkpoint
|
71 |
+
|
72 |
+
|
73 |
+
def c_crop(image):
|
74 |
+
width, height = image.size
|
75 |
+
new_size = min(width, height)
|
76 |
+
left = (width - new_size) / 2
|
77 |
+
top = (height - new_size) / 2
|
78 |
+
right = (width + new_size) / 2
|
79 |
+
bottom = (height + new_size) / 2
|
80 |
+
return image.crop((left, top, right, bottom))
|
81 |
+
|
82 |
+
def pad64(x):
|
83 |
+
return int(np.ceil(float(x) / 64.0) * 64 - x)
|
84 |
+
|
85 |
+
def HWC3(x):
|
86 |
+
assert x.dtype == np.uint8
|
87 |
+
if x.ndim == 2:
|
88 |
+
x = x[:, :, None]
|
89 |
+
assert x.ndim == 3
|
90 |
+
H, W, C = x.shape
|
91 |
+
assert C == 1 or C == 3 or C == 4
|
92 |
+
if C == 3:
|
93 |
+
return x
|
94 |
+
if C == 1:
|
95 |
+
return np.concatenate([x, x, x], axis=2)
|
96 |
+
if C == 4:
|
97 |
+
color = x[:, :, 0:3].astype(np.float32)
|
98 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
99 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
100 |
+
y = y.clip(0, 255).astype(np.uint8)
|
101 |
+
return y
|
102 |
+
|
103 |
+
@dataclass
|
104 |
+
class ModelSpec:
|
105 |
+
params: FluxParams
|
106 |
+
ae_params: AutoEncoderParams
|
107 |
+
ckpt_path: str | None
|
108 |
+
ae_path: str | None
|
109 |
+
repo_id: str | None
|
110 |
+
repo_flow: str | None
|
111 |
+
repo_ae: str | None
|
112 |
+
repo_id_ae: str | None
|
113 |
+
|
114 |
+
|
115 |
+
configs = {
|
116 |
+
"flux-dev": ModelSpec(
|
117 |
+
repo_id="black-forest-labs/FLUX.1-dev",
|
118 |
+
repo_id_ae="black-forest-labs/FLUX.1-dev",
|
119 |
+
repo_flow="flux1-dev.safetensors",
|
120 |
+
repo_ae="ae.safetensors",
|
121 |
+
ckpt_path=os.getenv("FLUX_DEV"),
|
122 |
+
params=FluxParams(
|
123 |
+
in_channels=64,
|
124 |
+
vec_in_dim=768,
|
125 |
+
context_in_dim=4096,
|
126 |
+
hidden_size=3072,
|
127 |
+
mlp_ratio=4.0,
|
128 |
+
num_heads=24,
|
129 |
+
depth=19,
|
130 |
+
depth_single_blocks=38,
|
131 |
+
axes_dim=[16, 56, 56],
|
132 |
+
theta=10_000,
|
133 |
+
qkv_bias=True,
|
134 |
+
guidance_embed=True,
|
135 |
+
),
|
136 |
+
ae_path=os.getenv("AE"),
|
137 |
+
ae_params=AutoEncoderParams(
|
138 |
+
resolution=256,
|
139 |
+
in_channels=3,
|
140 |
+
ch=128,
|
141 |
+
out_ch=3,
|
142 |
+
ch_mult=[1, 2, 4, 4],
|
143 |
+
num_res_blocks=2,
|
144 |
+
z_channels=16,
|
145 |
+
scale_factor=0.3611,
|
146 |
+
shift_factor=0.1159,
|
147 |
+
),
|
148 |
+
),
|
149 |
+
"flux-dev-fp8": ModelSpec(
|
150 |
+
repo_id="XLabs-AI/flux-dev-fp8",
|
151 |
+
repo_id_ae="black-forest-labs/FLUX.1-dev",
|
152 |
+
repo_flow="flux-dev-fp8.safetensors",
|
153 |
+
repo_ae="ae.safetensors",
|
154 |
+
ckpt_path=os.getenv("FLUX_DEV_FP8"),
|
155 |
+
params=FluxParams(
|
156 |
+
in_channels=64,
|
157 |
+
vec_in_dim=768,
|
158 |
+
context_in_dim=4096,
|
159 |
+
hidden_size=3072,
|
160 |
+
mlp_ratio=4.0,
|
161 |
+
num_heads=24,
|
162 |
+
depth=19,
|
163 |
+
depth_single_blocks=38,
|
164 |
+
axes_dim=[16, 56, 56],
|
165 |
+
theta=10_000,
|
166 |
+
qkv_bias=True,
|
167 |
+
guidance_embed=True,
|
168 |
+
),
|
169 |
+
ae_path=os.getenv("AE"),
|
170 |
+
ae_params=AutoEncoderParams(
|
171 |
+
resolution=256,
|
172 |
+
in_channels=3,
|
173 |
+
ch=128,
|
174 |
+
out_ch=3,
|
175 |
+
ch_mult=[1, 2, 4, 4],
|
176 |
+
num_res_blocks=2,
|
177 |
+
z_channels=16,
|
178 |
+
scale_factor=0.3611,
|
179 |
+
shift_factor=0.1159,
|
180 |
+
),
|
181 |
+
),
|
182 |
+
"flux-schnell": ModelSpec(
|
183 |
+
repo_id="black-forest-labs/FLUX.1-schnell",
|
184 |
+
repo_id_ae="black-forest-labs/FLUX.1-dev",
|
185 |
+
repo_flow="flux1-schnell.safetensors",
|
186 |
+
repo_ae="ae.safetensors",
|
187 |
+
ckpt_path=os.getenv("FLUX_SCHNELL"),
|
188 |
+
params=FluxParams(
|
189 |
+
in_channels=64,
|
190 |
+
vec_in_dim=768,
|
191 |
+
context_in_dim=4096,
|
192 |
+
hidden_size=3072,
|
193 |
+
mlp_ratio=4.0,
|
194 |
+
num_heads=24,
|
195 |
+
depth=19,
|
196 |
+
depth_single_blocks=38,
|
197 |
+
axes_dim=[16, 56, 56],
|
198 |
+
theta=10_000,
|
199 |
+
qkv_bias=True,
|
200 |
+
guidance_embed=False,
|
201 |
+
),
|
202 |
+
ae_path=os.getenv("AE"),
|
203 |
+
ae_params=AutoEncoderParams(
|
204 |
+
resolution=256,
|
205 |
+
in_channels=3,
|
206 |
+
ch=128,
|
207 |
+
out_ch=3,
|
208 |
+
ch_mult=[1, 2, 4, 4],
|
209 |
+
num_res_blocks=2,
|
210 |
+
z_channels=16,
|
211 |
+
scale_factor=0.3611,
|
212 |
+
shift_factor=0.1159,
|
213 |
+
),
|
214 |
+
),
|
215 |
+
}
|
216 |
+
|
217 |
+
|
218 |
+
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
|
219 |
+
if len(missing) > 0 and len(unexpected) > 0:
|
220 |
+
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
221 |
+
print("\n" + "-" * 79 + "\n")
|
222 |
+
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
223 |
+
elif len(missing) > 0:
|
224 |
+
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
225 |
+
elif len(unexpected) > 0:
|
226 |
+
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
227 |
+
|
228 |
+
def load_from_repo_id(repo_id, checkpoint_name):
|
229 |
+
ckpt_path = hf_hub_download(repo_id, checkpoint_name)
|
230 |
+
sd = load_sft(ckpt_path, device='cpu')
|
231 |
+
return sd
|
232 |
+
|
233 |
+
def load_flow_model(name: str, device: str | torch.device = "cuda", hf_download: bool = True):
|
234 |
+
# Loading Flux
|
235 |
+
print("Init model")
|
236 |
+
ckpt_path = configs[name].ckpt_path
|
237 |
+
if (
|
238 |
+
ckpt_path is None
|
239 |
+
and configs[name].repo_id is not None
|
240 |
+
and configs[name].repo_flow is not None
|
241 |
+
and hf_download
|
242 |
+
):
|
243 |
+
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow)
|
244 |
+
|
245 |
+
with torch.device("meta" if ckpt_path is not None else device):
|
246 |
+
model = Flux(configs[name].params).to(torch.bfloat16)
|
247 |
+
|
248 |
+
if ckpt_path is not None:
|
249 |
+
print("Loading checkpoint")
|
250 |
+
# load_sft doesn't support torch.device
|
251 |
+
sd = load_model(ckpt_path, device=str(device))
|
252 |
+
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
|
253 |
+
print_load_warning(missing, unexpected)
|
254 |
+
return model
|
255 |
+
|
256 |
+
def load_flow_model_only_lora(
|
257 |
+
name: str,
|
258 |
+
device: str | torch.device = "cuda",
|
259 |
+
hf_download: bool = True,
|
260 |
+
lora_rank: int = 16
|
261 |
+
):
|
262 |
+
# Loading Flux
|
263 |
+
print("Init model")
|
264 |
+
ckpt_path = configs[name].ckpt_path
|
265 |
+
if (
|
266 |
+
ckpt_path is None
|
267 |
+
and configs[name].repo_id is not None
|
268 |
+
and configs[name].repo_flow is not None
|
269 |
+
and hf_download
|
270 |
+
):
|
271 |
+
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow.replace("sft", "safetensors"))
|
272 |
+
|
273 |
+
if hf_download:
|
274 |
+
lora_ckpt_path = hf_hub_download("bytedance-research/UNO", "dit_lora.safetensors")
|
275 |
+
else:
|
276 |
+
lora_ckpt_path = os.environ.get("LORA", None)
|
277 |
+
|
278 |
+
with torch.device("meta" if ckpt_path is not None else device):
|
279 |
+
model = Flux(configs[name].params)
|
280 |
+
|
281 |
+
|
282 |
+
model = set_lora(model, lora_rank, device="meta" if lora_ckpt_path is not None else device)
|
283 |
+
|
284 |
+
if ckpt_path is not None:
|
285 |
+
print("Loading lora")
|
286 |
+
lora_sd = load_sft(lora_ckpt_path, device=str(device)) if lora_ckpt_path.endswith("safetensors")\
|
287 |
+
else torch.load(lora_ckpt_path, map_location='cpu')
|
288 |
+
|
289 |
+
print("Loading main checkpoint")
|
290 |
+
# load_sft doesn't support torch.device
|
291 |
+
|
292 |
+
if ckpt_path.endswith('safetensors'):
|
293 |
+
sd = load_sft(ckpt_path, device=str(device))
|
294 |
+
sd.update(lora_sd)
|
295 |
+
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
|
296 |
+
else:
|
297 |
+
dit_state = torch.load(ckpt_path, map_location='cpu')
|
298 |
+
sd = {}
|
299 |
+
for k in dit_state.keys():
|
300 |
+
sd[k.replace('module.','')] = dit_state[k]
|
301 |
+
sd.update(lora_sd)
|
302 |
+
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
|
303 |
+
model.to(str(device))
|
304 |
+
print_load_warning(missing, unexpected)
|
305 |
+
return model
|
306 |
+
|
307 |
+
|
308 |
+
def set_lora(
|
309 |
+
model: Flux,
|
310 |
+
lora_rank: int,
|
311 |
+
double_blocks_indices: list[int] | None = None,
|
312 |
+
single_blocks_indices: list[int] | None = None,
|
313 |
+
device: str | torch.device = "cpu",
|
314 |
+
) -> Flux:
|
315 |
+
double_blocks_indices = list(range(model.params.depth)) if double_blocks_indices is None else double_blocks_indices
|
316 |
+
single_blocks_indices = list(range(model.params.depth_single_blocks)) if single_blocks_indices is None \
|
317 |
+
else single_blocks_indices
|
318 |
+
|
319 |
+
lora_attn_procs = {}
|
320 |
+
with torch.device(device):
|
321 |
+
for name, attn_processor in model.attn_processors.items():
|
322 |
+
match = re.search(r'\.(\d+)\.', name)
|
323 |
+
if match:
|
324 |
+
layer_index = int(match.group(1))
|
325 |
+
|
326 |
+
if name.startswith("double_blocks") and layer_index in double_blocks_indices:
|
327 |
+
lora_attn_procs[name] = DoubleStreamBlockLoraProcessor(dim=model.params.hidden_size, rank=lora_rank)
|
328 |
+
elif name.startswith("single_blocks") and layer_index in single_blocks_indices:
|
329 |
+
lora_attn_procs[name] = SingleStreamBlockLoraProcessor(dim=model.params.hidden_size, rank=lora_rank)
|
330 |
+
else:
|
331 |
+
lora_attn_procs[name] = attn_processor
|
332 |
+
model.set_attn_processor(lora_attn_procs)
|
333 |
+
return model
|
334 |
+
|
335 |
+
|
336 |
+
def load_flow_model_quintized(name: str, device: str | torch.device = "cuda", hf_download: bool = True):
|
337 |
+
# Loading Flux
|
338 |
+
from optimum.quanto import requantize
|
339 |
+
print("Init model")
|
340 |
+
ckpt_path = configs[name].ckpt_path
|
341 |
+
if (
|
342 |
+
ckpt_path is None
|
343 |
+
and configs[name].repo_id is not None
|
344 |
+
and configs[name].repo_flow is not None
|
345 |
+
and hf_download
|
346 |
+
):
|
347 |
+
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow)
|
348 |
+
json_path = hf_hub_download(configs[name].repo_id, 'flux_dev_quantization_map.json')
|
349 |
+
|
350 |
+
|
351 |
+
model = Flux(configs[name].params).to(torch.bfloat16)
|
352 |
+
|
353 |
+
print("Loading checkpoint")
|
354 |
+
# load_sft doesn't support torch.device
|
355 |
+
sd = load_sft(ckpt_path, device='cpu')
|
356 |
+
with open(json_path, "r") as f:
|
357 |
+
quantization_map = json.load(f)
|
358 |
+
print("Start a quantization process...")
|
359 |
+
requantize(model, sd, quantization_map, device=device)
|
360 |
+
print("Model is quantized!")
|
361 |
+
return model
|
362 |
+
|
363 |
+
def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder:
|
364 |
+
# max length 64, 128, 256 and 512 should work (if your sequence is short enough)
|
365 |
+
return HFEmbedder("xlabs-ai/xflux_text_encoders", max_length=max_length, torch_dtype=torch.bfloat16).to(device)
|
366 |
+
|
367 |
+
def load_clip(device: str | torch.device = "cuda") -> HFEmbedder:
|
368 |
+
return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
|
369 |
+
|
370 |
+
|
371 |
+
def load_ae(name: str, device: str | torch.device = "cuda", hf_download: bool = True) -> AutoEncoder:
|
372 |
+
ckpt_path = configs[name].ae_path
|
373 |
+
if (
|
374 |
+
ckpt_path is None
|
375 |
+
and configs[name].repo_id is not None
|
376 |
+
and configs[name].repo_ae is not None
|
377 |
+
and hf_download
|
378 |
+
):
|
379 |
+
ckpt_path = hf_hub_download(configs[name].repo_id_ae, configs[name].repo_ae)
|
380 |
+
|
381 |
+
# Loading the autoencoder
|
382 |
+
print("Init AE")
|
383 |
+
with torch.device("meta" if ckpt_path is not None else device):
|
384 |
+
ae = AutoEncoder(configs[name].ae_params)
|
385 |
+
|
386 |
+
if ckpt_path is not None:
|
387 |
+
sd = load_sft(ckpt_path, device=str(device))
|
388 |
+
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
|
389 |
+
print_load_warning(missing, unexpected)
|
390 |
+
return ae
|
uno/utils/convert_yaml_to_args_file.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
|
2 |
+
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import yaml
|
17 |
+
|
18 |
+
parser = argparse.ArgumentParser()
|
19 |
+
parser.add_argument("--yaml", type=str, required=True)
|
20 |
+
parser.add_argument("--arg", type=str, required=True)
|
21 |
+
args = parser.parse_args()
|
22 |
+
|
23 |
+
|
24 |
+
with open(args.yaml, "r") as f:
|
25 |
+
data = yaml.safe_load(f)
|
26 |
+
|
27 |
+
with open(args.arg, "w") as f:
|
28 |
+
for k, v in data.items():
|
29 |
+
if isinstance(v, list):
|
30 |
+
v = list(map(str, v))
|
31 |
+
v = " ".join(v)
|
32 |
+
if v is None:
|
33 |
+
continue
|
34 |
+
print(f"--{k} {v}", end=" ", file=f)
|