File size: 16,968 Bytes
def2fd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from dataclasses import dataclass

import torch
from einops import rearrange
from torch import Tensor, nn

from ..math import attention, rope
import torch.nn.functional as F

class EmbedND(nn.Module):
    def __init__(self, dim: int, theta: int, axes_dim: list[int]):
        super().__init__()
        self.dim = dim
        self.theta = theta
        self.axes_dim = axes_dim

    def forward(self, ids: Tensor) -> Tensor:
        n_axes = ids.shape[-1]
        emb = torch.cat(
            [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
            dim=-3,
        )

        return emb.unsqueeze(1)


def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
    """
    Create sinusoidal timestep embeddings.
    :param t: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an (N, D) Tensor of positional embeddings.
    """
    t = time_factor * t
    half = dim // 2
    freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
        t.device
    )

    args = t[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    if torch.is_floating_point(t):
        embedding = embedding.to(t)
    return embedding


class MLPEmbedder(nn.Module):
    def __init__(self, in_dim: int, hidden_dim: int):
        super().__init__()
        self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
        self.silu = nn.SiLU()
        self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)

    def forward(self, x: Tensor) -> Tensor:
        return self.out_layer(self.silu(self.in_layer(x)))


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int):
        super().__init__()
        self.scale = nn.Parameter(torch.ones(dim))

    def forward(self, x: Tensor):
        x_dtype = x.dtype
        x = x.float()
        rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
        return (x * rrms).to(dtype=x_dtype) * self.scale


class QKNorm(torch.nn.Module):
    def __init__(self, dim: int):
        super().__init__()
        self.query_norm = RMSNorm(dim)
        self.key_norm = RMSNorm(dim)

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
        q = self.query_norm(q)
        k = self.key_norm(k)
        return q.to(v), k.to(v)

class LoRALinearLayer(nn.Module):
    def __init__(self, in_features, out_features, rank=4, network_alpha=None, device=None, dtype=None):
        super().__init__()

        self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
        self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        self.network_alpha = network_alpha
        self.rank = rank

        nn.init.normal_(self.down.weight, std=1 / rank)
        nn.init.zeros_(self.up.weight)

    def forward(self, hidden_states):
        orig_dtype = hidden_states.dtype
        dtype = self.down.weight.dtype

        down_hidden_states = self.down(hidden_states.to(dtype))
        up_hidden_states = self.up(down_hidden_states)

        if self.network_alpha is not None:
            up_hidden_states *= self.network_alpha / self.rank

        return up_hidden_states.to(orig_dtype)

class FLuxSelfAttnProcessor:
    def __call__(self, attn, x, pe, **attention_kwargs):
        qkv = attn.qkv(x)
        q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
        q, k = attn.norm(q, k, v)
        x = attention(q, k, v, pe=pe)
        x = attn.proj(x)
        return x

class LoraFluxAttnProcessor(nn.Module):

    def __init__(self, dim: int, rank=4, network_alpha=None, lora_weight=1):
        super().__init__()
        self.qkv_lora = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
        self.proj_lora = LoRALinearLayer(dim, dim, rank, network_alpha)
        self.lora_weight = lora_weight


    def __call__(self, attn, x, pe, **attention_kwargs):
        qkv = attn.qkv(x) + self.qkv_lora(x) * self.lora_weight
        q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
        q, k = attn.norm(q, k, v)
        x = attention(q, k, v, pe=pe)
        x = attn.proj(x) + self.proj_lora(x) * self.lora_weight
        return x

class SelfAttention(nn.Module):
    def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.norm = QKNorm(head_dim)
        self.proj = nn.Linear(dim, dim)
    def forward():
        pass


@dataclass
class ModulationOut:
    shift: Tensor
    scale: Tensor
    gate: Tensor


class Modulation(nn.Module):
    def __init__(self, dim: int, double: bool):
        super().__init__()
        self.is_double = double
        self.multiplier = 6 if double else 3
        self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)

    def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
        out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)

        return (
            ModulationOut(*out[:3]),
            ModulationOut(*out[3:]) if self.is_double else None,
        )

class DoubleStreamBlockLoraProcessor(nn.Module):
    def __init__(self, dim: int, rank=4, network_alpha=None, lora_weight=1):
        super().__init__()
        self.qkv_lora1 = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
        self.proj_lora1 = LoRALinearLayer(dim, dim, rank, network_alpha)
        self.qkv_lora2 = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
        self.proj_lora2 = LoRALinearLayer(dim, dim, rank, network_alpha)
        self.lora_weight = lora_weight

    def forward(self, attn, img, txt, vec, pe, **attention_kwargs):
        img_mod1, img_mod2 = attn.img_mod(vec)
        txt_mod1, txt_mod2 = attn.txt_mod(vec)

        # prepare image for attention
        img_modulated = attn.img_norm1(img)
        img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
        img_qkv = attn.img_attn.qkv(img_modulated) + self.qkv_lora1(img_modulated) * self.lora_weight
        img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
        img_q, img_k = attn.img_attn.norm(img_q, img_k, img_v)

        # prepare txt for attention
        txt_modulated = attn.txt_norm1(txt)
        txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
        txt_qkv = attn.txt_attn.qkv(txt_modulated) + self.qkv_lora2(txt_modulated) * self.lora_weight
        txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
        txt_q, txt_k = attn.txt_attn.norm(txt_q, txt_k, txt_v)

        # run actual attention
        q = torch.cat((txt_q, img_q), dim=2)
        k = torch.cat((txt_k, img_k), dim=2)
        v = torch.cat((txt_v, img_v), dim=2)

        attn1 = attention(q, k, v, pe=pe)
        txt_attn, img_attn = attn1[:, : txt.shape[1]], attn1[:, txt.shape[1] :]

        # calculate the img bloks
        img = img + img_mod1.gate * (attn.img_attn.proj(img_attn) + self.proj_lora1(img_attn) * self.lora_weight)
        img = img + img_mod2.gate * attn.img_mlp((1 + img_mod2.scale) * attn.img_norm2(img) + img_mod2.shift)

        # calculate the txt bloks
        txt = txt + txt_mod1.gate * (attn.txt_attn.proj(txt_attn) + self.proj_lora2(txt_attn) * self.lora_weight)
        txt = txt + txt_mod2.gate * attn.txt_mlp((1 + txt_mod2.scale) * attn.txt_norm2(txt) + txt_mod2.shift)
        return img, txt

class DoubleStreamBlockProcessor:
    def __call__(self, attn, img, txt, vec, pe, **attention_kwargs):
        img_mod1, img_mod2 = attn.img_mod(vec)
        txt_mod1, txt_mod2 = attn.txt_mod(vec)

        # prepare image for attention
        img_modulated = attn.img_norm1(img)
        img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
        img_qkv = attn.img_attn.qkv(img_modulated)
        img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim)
        img_q, img_k = attn.img_attn.norm(img_q, img_k, img_v)

        # prepare txt for attention
        txt_modulated = attn.txt_norm1(txt)
        txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
        txt_qkv = attn.txt_attn.qkv(txt_modulated)
        txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim)
        txt_q, txt_k = attn.txt_attn.norm(txt_q, txt_k, txt_v)

        # run actual attention
        q = torch.cat((txt_q, img_q), dim=2)
        k = torch.cat((txt_k, img_k), dim=2)
        v = torch.cat((txt_v, img_v), dim=2)

        attn1 = attention(q, k, v, pe=pe)
        txt_attn, img_attn = attn1[:, : txt.shape[1]], attn1[:, txt.shape[1] :]

        # calculate the img bloks
        img = img + img_mod1.gate * attn.img_attn.proj(img_attn)
        img = img + img_mod2.gate * attn.img_mlp((1 + img_mod2.scale) * attn.img_norm2(img) + img_mod2.shift)

        # calculate the txt bloks
        txt = txt + txt_mod1.gate * attn.txt_attn.proj(txt_attn)
        txt = txt + txt_mod2.gate * attn.txt_mlp((1 + txt_mod2.scale) * attn.txt_norm2(txt) + txt_mod2.shift)
        return img, txt

class DoubleStreamBlock(nn.Module):
    def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
        super().__init__()
        mlp_hidden_dim = int(hidden_size * mlp_ratio)
        self.num_heads = num_heads
        self.hidden_size = hidden_size
        self.head_dim = hidden_size // num_heads

        self.img_mod = Modulation(hidden_size, double=True)
        self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)

        self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.img_mlp = nn.Sequential(
            nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
            nn.GELU(approximate="tanh"),
            nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
        )

        self.txt_mod = Modulation(hidden_size, double=True)
        self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)

        self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.txt_mlp = nn.Sequential(
            nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
            nn.GELU(approximate="tanh"),
            nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
        )
        processor = DoubleStreamBlockProcessor()
        self.set_processor(processor)

    def set_processor(self, processor) -> None:
        self.processor = processor

    def get_processor(self):
        return self.processor

    def forward(
        self,
        img: Tensor,
        txt: Tensor,
        vec: Tensor,
        pe: Tensor,
        image_proj: Tensor = None,
        ip_scale: float =1.0,
    ) -> tuple[Tensor, Tensor]:
        if image_proj is None:
            return self.processor(self, img, txt, vec, pe)
        else:
            return self.processor(self, img, txt, vec, pe, image_proj, ip_scale)


class SingleStreamBlockLoraProcessor(nn.Module):
    def __init__(self, dim: int, rank: int = 4, network_alpha = None, lora_weight: float = 1):
        super().__init__()
        self.qkv_lora = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
        self.proj_lora = LoRALinearLayer(15360, dim, rank, network_alpha)
        self.lora_weight = lora_weight

    def forward(self, attn: nn.Module, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:

        mod, _ = attn.modulation(vec)
        x_mod = (1 + mod.scale) * attn.pre_norm(x) + mod.shift
        qkv, mlp = torch.split(attn.linear1(x_mod), [3 * attn.hidden_size, attn.mlp_hidden_dim], dim=-1)
        qkv = qkv + self.qkv_lora(x_mod) * self.lora_weight

        q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
        q, k = attn.norm(q, k, v)

        # compute attention
        attn_1 = attention(q, k, v, pe=pe)

        # compute activation in mlp stream, cat again and run second linear layer
        output = attn.linear2(torch.cat((attn_1, attn.mlp_act(mlp)), 2))
        output = output + self.proj_lora(torch.cat((attn_1, attn.mlp_act(mlp)), 2)) * self.lora_weight
        output = x + mod.gate * output
        return output


class SingleStreamBlockProcessor:
    def __call__(self, attn: nn.Module, x: Tensor, vec: Tensor, pe: Tensor, **attention_kwargs) -> Tensor:

        mod, _ = attn.modulation(vec)
        x_mod = (1 + mod.scale) * attn.pre_norm(x) + mod.shift
        qkv, mlp = torch.split(attn.linear1(x_mod), [3 * attn.hidden_size, attn.mlp_hidden_dim], dim=-1)

        q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
        q, k = attn.norm(q, k, v)

        # compute attention
        attn_1 = attention(q, k, v, pe=pe)

        # compute activation in mlp stream, cat again and run second linear layer
        output = attn.linear2(torch.cat((attn_1, attn.mlp_act(mlp)), 2))
        output = x + mod.gate * output
        return output

class SingleStreamBlock(nn.Module):
    """
    A DiT block with parallel linear layers as described in
    https://arxiv.org/abs/2302.05442 and adapted modulation interface.
    """

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qk_scale: float | None = None,
    ):
        super().__init__()
        self.hidden_dim = hidden_size
        self.num_heads = num_heads
        self.head_dim = hidden_size // num_heads
        self.scale = qk_scale or self.head_dim**-0.5

        self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
        # qkv and mlp_in
        self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
        # proj and mlp_out
        self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)

        self.norm = QKNorm(self.head_dim)

        self.hidden_size = hidden_size
        self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)

        self.mlp_act = nn.GELU(approximate="tanh")
        self.modulation = Modulation(hidden_size, double=False)

        processor = SingleStreamBlockProcessor()
        self.set_processor(processor)


    def set_processor(self, processor) -> None:
        self.processor = processor

    def get_processor(self):
        return self.processor

    def forward(
        self,
        x: Tensor,
        vec: Tensor,
        pe: Tensor,
        image_proj: Tensor | None = None,
        ip_scale: float = 1.0,
    ) -> Tensor:
        if image_proj is None:
            return self.processor(self, x, vec, pe)
        else:
            return self.processor(self, x, vec, pe, image_proj, ip_scale)



class LastLayer(nn.Module):
    def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
        self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))

    def forward(self, x: Tensor, vec: Tensor) -> Tensor:
        shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
        x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
        x = self.linear(x)
        return x