Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,268 Bytes
def2fd8 3408cd5 9d31e57 3408cd5 def2fd8 3994a93 def2fd8 9d31e57 def2fd8 3408cd5 def2fd8 c62efeb 631aa6b c62efeb 3408cd5 c62efeb 3408cd5 c62efeb def2fd8 3408cd5 c62efeb 3408cd5 c62efeb 3408cd5 9d31e57 c62efeb 9d31e57 3408cd5 def2fd8 3408cd5 def2fd8 3408cd5 231faea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import json
from pathlib import Path
import gradio as gr
import torch
import spaces
from uno.flux.pipeline import UNOPipeline
def get_examples(examples_dir: str = "assets/examples") -> list:
examples = Path(examples_dir)
ans = []
for example in examples.iterdir():
if not example.is_dir():
continue
with open(example / "config.json") as f:
example_dict = json.load(f)
example_list = []
example_list.append(example_dict["useage"]) # case for
example_list.append(example_dict["prompt"]) # prompt
for key in ["image_ref1", "image_ref2", "image_ref3", "image_ref4"]:
if key in example_dict:
example_list.append(str(example / example_dict[key]))
else:
example_list.append(None)
example_list.append(example_dict["seed"])
ans.append(example_list)
return ans
def create_demo(
model_type: str,
device: str = "cuda" if torch.cuda.is_available() else "cpu",
offload: bool = False,
):
pipeline = UNOPipeline(model_type, device, offload, only_lora=True, lora_rank=512)
pipeline.gradio_generate = spaces.GPU(duratioin=120)(pipeline.gradio_generate)
badges_text = r"""
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href="https://github.com/bytedance/UNO"><img alt="Build" src="https://img.shields.io/github/stars/bytedance/UNO"></a>
<a href="https://bytedance.github.io/UNO/"><img alt="Build" src="https://img.shields.io/badge/Project%20Page-UNO-yellow"></a>
<a href="https://arxiv.org/abs/2504.02160"><img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-UNO-b31b1b.svg"></a>
<a href="https://huggingface.co./bytedance-research/UNO"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Model&color=orange"></a>
<a href="https://huggingface.co./spaces/bytedance-research/UNO-FLUX"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=demo&color=orange"></a>
</div>
""".strip()
with gr.Blocks() as demo:
gr.Markdown(f"# UNO by UNO team")
gr.Markdown(badges_text)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="handsome woman in the city")
with gr.Row():
image_prompt1 = gr.Image(label="Ref Img1", visible=True, interactive=True, type="pil")
image_prompt2 = gr.Image(label="Ref Img2", visible=True, interactive=True, type="pil")
image_prompt3 = gr.Image(label="Ref Img3", visible=True, interactive=True, type="pil")
image_prompt4 = gr.Image(label="Ref img4", visible=True, interactive=True, type="pil")
with gr.Row():
with gr.Column():
width = gr.Slider(512, 2048, 512, step=16, label="Gneration Width")
height = gr.Slider(512, 2048, 512, step=16, label="Gneration Height")
with gr.Column():
gr.Markdown("📌 The model trained on 512x512 resolution.\n")
gr.Markdown(
"The size closer to 512 is more stable,"
" and the higher size gives a better visual effect but is less stable"
)
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True)
seed = gr.Number(-1, label="Seed (-1 for random)")
generate_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(label="Generated Image")
download_btn = gr.File(label="Download full-resolution", type="filepath", interactive=False)
inputs = [
prompt, width, height, guidance, num_steps,
seed, image_prompt1, image_prompt2, image_prompt3, image_prompt4
]
generate_btn.click(
fn=pipeline.gradio_generate,
inputs=inputs,
outputs=[output_image, download_btn],
)
example_text = gr.Text("", visible=False, label="Case For:")
examples = get_examples("./assets/examples")
gr.Examples(
examples=examples,
inputs=[
example_text, prompt,
image_prompt1, image_prompt2, image_prompt3, image_prompt4,
seed, output_image
],
)
return demo
if __name__ == "__main__":
from typing import Literal
from transformers import HfArgumentParser
@dataclasses.dataclass
class AppArgs:
name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev"
device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu"
offload: bool = dataclasses.field(
default=False,
metadata={"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."}
)
port: int = 7860
parser = HfArgumentParser([AppArgs])
args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs]
args = args_tuple[0]
demo = create_demo(args.name, args.device, args.offload)
demo.launch(server_port=args.port, ssr_mode=False)
|