File size: 6,268 Bytes
def2fd8
 
 
 
 
 
 
 
 
 
 
 
 
3408cd5
 
9d31e57
 
3408cd5
def2fd8
 
3994a93
def2fd8
 
 
9d31e57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
def2fd8
3408cd5
 
 
 
 
 
 
def2fd8
c62efeb
 
 
631aa6b
c62efeb
 
 
 
 
 
 
3408cd5
 
c62efeb
3408cd5
 
 
 
c62efeb
 
 
 
def2fd8
3408cd5
 
 
 
 
 
 
 
 
 
 
c62efeb
3408cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
c62efeb
3408cd5
 
 
 
 
 
9d31e57
 
 
 
 
 
 
 
 
c62efeb
9d31e57
 
 
3408cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
def2fd8
3408cd5
 
 
 
 
def2fd8
3408cd5
231faea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import dataclasses
import json
from pathlib import Path

import gradio as gr
import torch
import spaces

from uno.flux.pipeline import UNOPipeline

def get_examples(examples_dir: str = "assets/examples") -> list:
    examples = Path(examples_dir)
    ans = []
    for example in examples.iterdir():
        if not example.is_dir():
            continue
        with open(example / "config.json") as f:
            example_dict = json.load(f)
  
        
        example_list = []

        example_list.append(example_dict["useage"])  # case for
        example_list.append(example_dict["prompt"])  # prompt

        for key in ["image_ref1", "image_ref2", "image_ref3", "image_ref4"]:
            if key in example_dict:
                example_list.append(str(example / example_dict[key]))
            else:
                example_list.append(None)

        example_list.append(example_dict["seed"])

        ans.append(example_list)
    return ans


def create_demo(
    model_type: str,
    device: str = "cuda" if torch.cuda.is_available() else "cpu",
    offload: bool = False,
):
    pipeline = UNOPipeline(model_type, device, offload, only_lora=True, lora_rank=512)
    pipeline.gradio_generate = spaces.GPU(duratioin=120)(pipeline.gradio_generate)


    badges_text = r"""
    <div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
    <a href="https://github.com/bytedance/UNO"><img alt="Build" src="https://img.shields.io/github/stars/bytedance/UNO"></a> 
    <a href="https://bytedance.github.io/UNO/"><img alt="Build" src="https://img.shields.io/badge/Project%20Page-UNO-yellow"></a> 
    <a href="https://arxiv.org/abs/2504.02160"><img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-UNO-b31b1b.svg"></a>
    <a href="https://huggingface.co./bytedance-research/UNO"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Model&color=orange"></a>
    <a href="https://huggingface.co./spaces/bytedance-research/UNO-FLUX"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=demo&color=orange"></a>
    </div>
    """.strip()

    with gr.Blocks() as demo:
        gr.Markdown(f"# UNO by UNO team")
        gr.Markdown(badges_text)
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt", value="handsome woman in the city")
                with gr.Row():
                    image_prompt1 = gr.Image(label="Ref Img1", visible=True, interactive=True, type="pil")
                    image_prompt2 = gr.Image(label="Ref Img2", visible=True, interactive=True, type="pil")
                    image_prompt3 = gr.Image(label="Ref Img3", visible=True, interactive=True, type="pil")
                    image_prompt4 = gr.Image(label="Ref img4", visible=True, interactive=True, type="pil")

                with gr.Row():
                    with gr.Column():
                        width = gr.Slider(512, 2048, 512, step=16, label="Gneration Width")
                        height = gr.Slider(512, 2048, 512, step=16, label="Gneration Height")
                    with gr.Column():
                        gr.Markdown("📌 The model trained on 512x512 resolution.\n")
                        gr.Markdown(
                            "The size closer to 512 is more stable,"
                            " and the higher size gives a better visual effect but is less stable"
                        )

                with gr.Accordion("Advanced Options", open=False):
                    with gr.Row():
                        num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
                        guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True)
                        seed = gr.Number(-1, label="Seed (-1 for random)")

                generate_btn = gr.Button("Generate")

            with gr.Column():
                output_image = gr.Image(label="Generated Image")
                download_btn = gr.File(label="Download full-resolution", type="filepath", interactive=False)


            inputs = [
                prompt, width, height, guidance, num_steps,
                seed, image_prompt1, image_prompt2, image_prompt3, image_prompt4
            ]
            generate_btn.click(
                fn=pipeline.gradio_generate,
                inputs=inputs,
                outputs=[output_image, download_btn],
            )
        
        example_text = gr.Text("", visible=False, label="Case For:")
        examples = get_examples("./assets/examples")

        gr.Examples(
            examples=examples,
            inputs=[
                example_text, prompt,
                image_prompt1, image_prompt2, image_prompt3, image_prompt4,
                seed, output_image
            ],
        )

    return demo

if __name__ == "__main__":
    from typing import Literal

    from transformers import HfArgumentParser

    @dataclasses.dataclass
    class AppArgs:
        name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev"
        device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu"
        offload: bool = dataclasses.field(
            default=False,
            metadata={"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."}
        )
        port: int = 7860

    parser = HfArgumentParser([AppArgs])
    args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs]
    args = args_tuple[0]

    demo = create_demo(args.name, args.device, args.offload)
    demo.launch(server_port=args.port, ssr_mode=False)