Spaces:
Runtime error
Runtime error
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class MinAttention(nn.Module): | |
def __init__(self, q_dim: int, kv_dim: int, dim_head=64, heads=8): | |
super().__init__() | |
self.dim_head = dim_head | |
self.heads = heads | |
inner_dim = dim_head * heads | |
self.norm1 = nn.LayerNorm(q_dim) | |
self.norm2 = nn.LayerNorm(kv_dim) | |
self.to_q = nn.Linear(q_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(kv_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(kv_dim, inner_dim, bias=False) | |
def forward(self, local_fea, global_fea): | |
global_fea = self.norm1(global_fea) | |
local_fea = self.norm2(local_fea) | |
b, l, _ = global_fea.shape | |
q = self.to_q(global_fea) | |
k = self.to_k(local_fea) | |
v = self.to_v(local_fea) | |
q = q.view(b, -1, self.heads, self.dim_head).transpose(1, 2) | |
k = k.view(b, -1, self.heads, self.dim_head).transpose(1, 2) | |
v = v.view(b, -1, self.heads, self.dim_head).transpose(1, 2) | |
hidden_states = F.scaled_dot_product_attention( | |
q,k,v, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(b, -1, self.heads*self.dim_head) | |
hidden_states = hidden_states.to(q.dtype) | |
return hidden_states | |
class CustomParameter(nn.Module): | |
def __init__(self, init_value): | |
super().__init__() | |
self.init_value = init_value | |
self.value = nn.Parameter(torch.tensor(init_value)) | |
def forward(self): | |
return self.value | |
class ProjectorHighResMinAttn(nn.Module): | |
def __init__(self, vision_dim, out_dim, dim_head=64, adaptive_scale=False, scale_value=1.0, **kwargs): | |
super().__init__() | |
self.initial_projection_dim = vision_dim * 4 | |
heads = vision_dim // dim_head | |
self.min_attention = MinAttention(q_dim=vision_dim, kv_dim=vision_dim, dim_head=dim_head, heads=heads) | |
self.projector = nn.Sequential( | |
nn.Linear(vision_dim, self.initial_projection_dim, bias=True), | |
nn.GELU(), | |
nn.Linear(self.initial_projection_dim, out_dim, bias=True), | |
nn.GELU(), | |
nn.Linear(out_dim, out_dim, bias=True), | |
nn.LayerNorm(out_dim) | |
) | |
self.projector_base = nn.Linear(vision_dim, out_dim, bias=True) | |
self.adaptive_scale = adaptive_scale | |
if self.adaptive_scale: | |
self.scale_value = CustomParameter(scale_value) | |
def forward(self, vision_input_dict, time_emb=None, **kwargs): | |
""" | |
vision_input_dict: here, this is not a dict, just for the unity of naming | |
""" | |
img_patch_features = vision_input_dict | |
deep_features, deep_features_local = img_patch_features | |
fused_img_features = self.min_attention(deep_features_local, deep_features) | |
fused_img_features = self.projector(fused_img_features) | |
deep_img_features = self.projector_base(deep_features) | |
if self.adaptive_scale: | |
output = deep_img_features + fused_img_features * self.scale_value() | |
else: | |
output = deep_img_features + fused_img_features | |
return output | |
class ProjectorHighResShallowMinAttnV1(nn.Module): | |
def __init__(self, vision_dim, out_dim, dim_head=64, **kwargs): | |
super().__init__() | |
self.initial_projection_dim = vision_dim * 4 | |
heads = vision_dim // dim_head | |
self.min_attention = MinAttention(q_dim=vision_dim, kv_dim=vision_dim, dim_head=dim_head, heads=heads) | |
self.projector = nn.Sequential( | |
nn.Linear(vision_dim, self.initial_projection_dim, bias=True), | |
nn.GELU(), | |
nn.Linear(self.initial_projection_dim, out_dim, bias=True), | |
nn.GELU(), | |
nn.Linear(out_dim, out_dim, bias=True), | |
nn.LayerNorm(out_dim) | |
) | |
self.projector_base = nn.Linear(vision_dim, out_dim, bias=True) | |
self.min_attention2 = MinAttention(q_dim=vision_dim, kv_dim=vision_dim, dim_head=dim_head, heads=heads) | |
self.projector2 = nn.Sequential( | |
nn.Linear(vision_dim, self.initial_projection_dim, bias=True), | |
nn.GELU(), | |
nn.Linear(self.initial_projection_dim, out_dim, bias=True), | |
nn.GELU(), | |
nn.Linear(out_dim, out_dim, bias=True), | |
nn.LayerNorm(out_dim) | |
) | |
def forward(self, vision_input_dict, time_emb=None, **kwargs): | |
""" | |
vision_input_dict: here, this is not a dict, just for the unity of naming | |
""" | |
img_patch_features = vision_input_dict | |
shallow_features1, shallow_features2, shallow_features3, deep_features, deep_features_local = img_patch_features | |
shallow_features = torch.cat([shallow_features1, shallow_features2, shallow_features3], dim=1) # token concat | |
# original code | |
fused_img_features = self.min_attention(deep_features_local, deep_features) | |
fused_img_features = self.projector(fused_img_features) | |
deep_img_features = self.projector_base(deep_features) | |
output = deep_img_features + fused_img_features | |
# new code part | |
fused_img_features2 = self.min_attention2(shallow_features, deep_features) | |
fused_img_features2 = self.projector2(fused_img_features2) | |
output = torch.cat([deep_img_features, fused_img_features2], dim=1) | |
return output |