# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class MinAttention(nn.Module): def __init__(self, q_dim: int, kv_dim: int, dim_head=64, heads=8): super().__init__() self.dim_head = dim_head self.heads = heads inner_dim = dim_head * heads self.norm1 = nn.LayerNorm(q_dim) self.norm2 = nn.LayerNorm(kv_dim) self.to_q = nn.Linear(q_dim, inner_dim, bias=False) self.to_k = nn.Linear(kv_dim, inner_dim, bias=False) self.to_v = nn.Linear(kv_dim, inner_dim, bias=False) def forward(self, local_fea, global_fea): global_fea = self.norm1(global_fea) local_fea = self.norm2(local_fea) b, l, _ = global_fea.shape q = self.to_q(global_fea) k = self.to_k(local_fea) v = self.to_v(local_fea) q = q.view(b, -1, self.heads, self.dim_head).transpose(1, 2) k = k.view(b, -1, self.heads, self.dim_head).transpose(1, 2) v = v.view(b, -1, self.heads, self.dim_head).transpose(1, 2) hidden_states = F.scaled_dot_product_attention( q,k,v, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(b, -1, self.heads*self.dim_head) hidden_states = hidden_states.to(q.dtype) return hidden_states class CustomParameter(nn.Module): def __init__(self, init_value): super().__init__() self.init_value = init_value self.value = nn.Parameter(torch.tensor(init_value)) def forward(self): return self.value class ProjectorHighResMinAttn(nn.Module): def __init__(self, vision_dim, out_dim, dim_head=64, adaptive_scale=False, scale_value=1.0, **kwargs): super().__init__() self.initial_projection_dim = vision_dim * 4 heads = vision_dim // dim_head self.min_attention = MinAttention(q_dim=vision_dim, kv_dim=vision_dim, dim_head=dim_head, heads=heads) self.projector = nn.Sequential( nn.Linear(vision_dim, self.initial_projection_dim, bias=True), nn.GELU(), nn.Linear(self.initial_projection_dim, out_dim, bias=True), nn.GELU(), nn.Linear(out_dim, out_dim, bias=True), nn.LayerNorm(out_dim) ) self.projector_base = nn.Linear(vision_dim, out_dim, bias=True) self.adaptive_scale = adaptive_scale if self.adaptive_scale: self.scale_value = CustomParameter(scale_value) def forward(self, vision_input_dict, time_emb=None, **kwargs): """ vision_input_dict: here, this is not a dict, just for the unity of naming """ img_patch_features = vision_input_dict deep_features, deep_features_local = img_patch_features fused_img_features = self.min_attention(deep_features_local, deep_features) fused_img_features = self.projector(fused_img_features) deep_img_features = self.projector_base(deep_features) if self.adaptive_scale: output = deep_img_features + fused_img_features * self.scale_value() else: output = deep_img_features + fused_img_features return output class ProjectorHighResShallowMinAttnV1(nn.Module): def __init__(self, vision_dim, out_dim, dim_head=64, **kwargs): super().__init__() self.initial_projection_dim = vision_dim * 4 heads = vision_dim // dim_head self.min_attention = MinAttention(q_dim=vision_dim, kv_dim=vision_dim, dim_head=dim_head, heads=heads) self.projector = nn.Sequential( nn.Linear(vision_dim, self.initial_projection_dim, bias=True), nn.GELU(), nn.Linear(self.initial_projection_dim, out_dim, bias=True), nn.GELU(), nn.Linear(out_dim, out_dim, bias=True), nn.LayerNorm(out_dim) ) self.projector_base = nn.Linear(vision_dim, out_dim, bias=True) self.min_attention2 = MinAttention(q_dim=vision_dim, kv_dim=vision_dim, dim_head=dim_head, heads=heads) self.projector2 = nn.Sequential( nn.Linear(vision_dim, self.initial_projection_dim, bias=True), nn.GELU(), nn.Linear(self.initial_projection_dim, out_dim, bias=True), nn.GELU(), nn.Linear(out_dim, out_dim, bias=True), nn.LayerNorm(out_dim) ) def forward(self, vision_input_dict, time_emb=None, **kwargs): """ vision_input_dict: here, this is not a dict, just for the unity of naming """ img_patch_features = vision_input_dict shallow_features1, shallow_features2, shallow_features3, deep_features, deep_features_local = img_patch_features shallow_features = torch.cat([shallow_features1, shallow_features2, shallow_features3], dim=1) # token concat # original code fused_img_features = self.min_attention(deep_features_local, deep_features) fused_img_features = self.projector(fused_img_features) deep_img_features = self.projector_base(deep_features) output = deep_img_features + fused_img_features # new code part fused_img_features2 = self.min_attention2(shallow_features, deep_features) fused_img_features2 = self.projector2(fused_img_features2) output = torch.cat([deep_img_features, fused_img_features2], dim=1) return output