File size: 10,762 Bytes
069bed5
 
 
 
 
 
 
 
 
3f1ac1e
069bed5
 
 
 
 
 
3f1ac1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34e2c53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e06c9d
 
 
 
 
 
34e2c53
 
 
 
3f1ac1e
34e2c53
 
 
 
 
3f1ac1e
34e2c53
3f1ac1e
9e06c9d
34e2c53
9e06c9d
 
34e2c53
9e06c9d
 
 
3f1ac1e
34e2c53
069bed5
 
 
34e2c53
069bed5
34e2c53
 
 
3f1ac1e
34e2c53
3f1ac1e
34e2c53
 
3f1ac1e
34e2c53
 
 
 
3f1ac1e
34e2c53
3f1ac1e
 
34e2c53
3f1ac1e
 
 
 
34e2c53
3f1ac1e
 
 
34e2c53
 
 
3f1ac1e
 
 
 
 
 
 
 
34e2c53
3f1ac1e
9e06c9d
 
 
 
 
34e2c53
9e06c9d
 
34e2c53
9e06c9d
34e2c53
 
9e06c9d
34e2c53
9e06c9d
34e2c53
 
9e06c9d
34e2c53
 
9e06c9d
34e2c53
 
9e06c9d
 
34e2c53
9e06c9d
 
 
34e2c53
 
9e06c9d
 
 
34e2c53
 
 
 
 
9e06c9d
 
34e2c53
9e06c9d
34e2c53
 
 
9e06c9d
 
 
069bed5
34e2c53
 
 
 
 
 
868ef7a
3f1ac1e
 
 
 
96afb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f1ac1e
069bed5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import streamlit as st
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
import nltk
from nltk.corpus import stopwords
from nltk import FreqDist
import re
import os
import base64
from graphviz import Digraph
from io import BytesIO
import networkx as nx
import matplotlib.pyplot as plt

st.set_page_config(
    page_title="πŸ“ΊTranscriptπŸ“œEDAπŸ”NLTK",
    page_icon="🌠",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'https://huggingface.co./awacke1',
        'Report a bug': "https://huggingface.co./awacke1",
        'About': "https://huggingface.co./awacke1"
    }
)

st.markdown('''
1. πŸ” **Transcript Insights Using Exploratory Data Analysis (EDA)** πŸ“Š - Unveil hidden patterns πŸ•΅οΈβ€β™‚οΈ and insights 🧠 in your transcripts. πŸ†.
2. πŸ“œ **Natural Language Toolkit (NLTK)** πŸ› οΈ:- your compass 🧭 in the vast landscape of NLP.
3. πŸ“Ί **Transcript Analysis** πŸ“ˆ:Speech recognition πŸŽ™οΈ and thematic extraction 🌐, audiovisual content to actionable insights πŸ”‘.
''')

# 🧠 Cluster sentences using K-means
def cluster_sentences(sentences, num_clusters):
    sentences = [s for s in sentences if len(s) > 10]
    num_clusters = min(num_clusters, len(sentences))
    vectorizer = TfidfVectorizer()
    X = vectorizer.fit_transform(sentences)
    kmeans = KMeans(n_clusters=num_clusters, random_state=42)
    kmeans.fit(X)
    clustered_sentences = [[] for _ in range(num_clusters)]
    for i, label in enumerate(kmeans.labels_):
        similarity = linear_kernel(kmeans.cluster_centers_[label:label+1], X[i:i+1]).flatten()[0]
        clustered_sentences[label].append((similarity, sentences[i]))
    return [[s for _, s in sorted(cluster, reverse=True)] for cluster in clustered_sentences]

# πŸ“Š Create context graph
def create_context_graph(context_words):
    graph = Digraph()
    for i, (before, high, after) in enumerate(context_words):
        if before:
            graph.node(f'before{i}', before, shape='box')
            graph.edge(f'before{i}', f'high{i}', label=before)
        graph.node(f'high{i}', high, shape='ellipse')
        if after:
            graph.node(f'after{i}', after, shape='diamond')
            graph.edge(f'high{i}', f'after{i}', label=after)
    return graph

# πŸ”— Create relationship graph
def create_relationship_graph(words):
    graph = Digraph()
    for i, word in enumerate(words):
        graph.node(str(i), word)
        if i > 0:
            graph.edge(str(i-1), str(i), label=word)
    return graph

# πŸ“ˆ Display context graph
def display_context_graph(context_words):
    st.graphviz_chart(create_context_graph(context_words))

# πŸ“Š Display context table
def display_context_table(context_words):
    table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n"
    table += "\n".join(f"| {b if b else ''} | {h} | {a if a else ''} |" for b, h, a in context_words)
    st.markdown(table)

# πŸ“ˆ Display relationship graph
def display_relationship_graph(words):
    st.graphviz_chart(create_relationship_graph(words))

# πŸ“₯ Download NLTK data
@st.cache_resource
def download_nltk_data():
    try:
        nltk.data.find('tokenizers/punkt')
        nltk.data.find('corpora/stopwords')
    except LookupError:
        with st.spinner('Downloading required NLTK data...'):
            nltk.download('punkt')
            nltk.download('stopwords')
    st.success('NLTK data is ready!')

# πŸ” Extract context words
def extract_context_words(text, high_information_words):
    words = nltk.word_tokenize(text)
    return [(words[i-1] if i > 0 else None, word, words[i+1] if i < len(words)-1 else None)
            for i, word in enumerate(words) if word.lower() in high_information_words]

# πŸ“Š Extract high information words
def extract_high_information_words(text, top_n=10):
    try:
        words = [word.lower() for word in nltk.word_tokenize(text) if word.isalpha()]
        stop_words = set(stopwords.words('english'))
        filtered_words = [word for word in words if word not in stop_words]
        return [word for word, _ in FreqDist(filtered_words).most_common(top_n)]
    except Exception as e:
        st.error(f"Error in extract_high_information_words: {str(e)}")
        return []

# πŸ“ Get text files
def get_txt_files():
    excluded_files = {'freeze.txt', 'requirements.txt', 'packages.txt', 'pre-requirements.txt'}
    txt_files = [f for f in os.listdir() if f.endswith('.txt') and f not in excluded_files]
    return pd.DataFrame({'File Name': txt_files, 'Full Path': [os.path.abspath(f) for f in txt_files]})

# πŸ“Š Get high info words per cluster
def get_high_info_words_per_cluster(cluster_sentences, num_words=5):
    return [extract_high_information_words(" ".join(cluster), num_words) for cluster in cluster_sentences]

# πŸ’Ύ Get text file download link
def get_text_file_download_link(text_to_download, filename='Output.txt', button_label="πŸ’Ύ Save"):
    b64 = base64.b64encode(text_to_download.encode()).decode()
    return f'<a href="data:file/txt;base64,{b64}" download="{filename}" style="margin-top:20px;">{button_label}</a>'

# πŸ“Š Perform EDA
def perform_eda(file_name):
    st.subheader(f"EDA for {file_name}")
    process_file(os.path.abspath(file_name))

# πŸ“Š Plot cluster words
def plot_cluster_words(cluster_sentences):
    for i, cluster in enumerate(cluster_sentences):
        words = re.findall(r'\b[a-z]{4,}\b', " ".join(cluster))
        word_freq = FreqDist(words)
        top_words = [word for word, _ in word_freq.most_common(20)]
        vectorizer = TfidfVectorizer()
        X = vectorizer.fit_transform(top_words)
        similarity_matrix = cosine_similarity(X.toarray())
        G = nx.from_numpy_array(similarity_matrix)
        pos = nx.spring_layout(G, k=0.5)
        plt.figure(figsize=(8, 6))
        nx.draw_networkx(G, pos, node_size=500, font_size=12, font_weight='bold', with_labels=True, 
                         labels={i: word for i, word in enumerate(top_words)}, 
                         node_color='skyblue', edge_color='gray')
        plt.axis('off')
        plt.title(f"Cluster {i+1} Word Arrangement")
        st.pyplot(plt)
        st.markdown(f"**Cluster {i+1} Details:**")
        st.markdown(f"Top Words: {', '.join(top_words)}")
        st.markdown(f"Number of Sentences: {len(cluster)}")
        st.markdown("---")

# πŸ“ Process file
def process_file(file_path):
    try:
        with open(file_path, 'r', encoding="utf-8") as file:
            file_text = file.read()
        text_without_timestamps = remove_timestamps(file_text)
        top_words = extract_high_information_words(text_without_timestamps, 10)
        
        with st.expander("πŸ“Š Top 10 High Information Words"):
            st.write(top_words)
        
        with st.expander("πŸ“ˆ Relationship Graph"):
            display_relationship_graph(top_words) if top_words else st.warning("Unable to generate relationship graph.")
        
        context_words = extract_context_words(text_without_timestamps, top_words)
        
        with st.expander("πŸ”— Context Graph"):
            display_context_graph(context_words) if context_words else st.warning("Unable to generate context graph.")
        
        with st.expander("πŸ“‘ Context Table"):
            display_context_table(context_words) if context_words else st.warning("Unable to display context table.")
        
        sentences = [line.strip() for line in file_text.split('\n') if len(line.strip()) > 10]
        st.write(f"Total Sentences: {len(sentences)}")
        
        num_clusters = st.slider("Number of Clusters", min_value=2, max_value=10, value=5)
        clustered_sentences = cluster_sentences(sentences, num_clusters)
        
        col1, col2 = st.columns(2)
        with col1:
            st.subheader("Original Text")
            st.text_area("Original Sentences", value="\n".join(sentences), height=400)
        
        with col2:
            st.subheader("Clustered Text")
            cluster_high_info_words = get_high_info_words_per_cluster(clustered_sentences)
            clusters = "\n".join(f"Cluster {i+1} (High Info Words: {', '.join(words)})"
                                 for i, words in enumerate(cluster_high_info_words))
            clustered_text = "\n\n".join(f"Cluster {i+1} (High Info Words: {', '.join(words)}):\n{cluster_text}"
                                         for i, (words, cluster_text) in enumerate(zip(cluster_high_info_words, 
                                                                                       ["\n".join(cluster) for cluster in clustered_sentences])))
            st.text_area("Clusters", value=clusters, height=200)
            st.text_area("Clustered Sentences", value=clustered_text, height=200)
            
            clustered_sentences_flat = [sentence for cluster in clustered_sentences for sentence in cluster]
            st.write("βœ… All sentences are accounted for in the clustered output." if set(sentences) == set(clustered_sentences_flat)
                     else "❌ Some sentences are missing in the clustered output.")
        
        plot_cluster_words(clustered_sentences)
    except Exception as e:
        st.error(f"Error processing file: {str(e)}")

# πŸ•°οΈ Remove timestamps
def remove_timestamps(text):
    return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text)

# Main execution
download_nltk_data()

st.title("πŸ“Ί Transcript Analysis πŸ“Š")

txt_files_df = get_txt_files()
st.write("Available .txt files:")
st.dataframe(txt_files_df[['File Name']])

st.write("Select a file to perform EDA:")
cols = st.columns(len(txt_files_df))
for i, (_, row) in enumerate(txt_files_df.iterrows()):
    if cols[i].button(f":file_folder: {row['File Name']}"):
        perform_eda(row['File Name'])

if "messages" not in st.session_state:
    st.session_state.messages = []

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

if prompt := st.chat_input("Ask a question about the data"):
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)
    response = f"You asked: {prompt}\n\nThis is a placeholder response. In a real application, you would process the user's question and provide an answer based on the data and EDA results."
    st.session_state.messages.append({"role": "assistant", "content": response})
    with st.chat_message("assistant"):
        st.markdown(response)

st.markdown("For more information and updates, visit our [help page](https://huggingface.co./awacke1).")