Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
import os
|
4 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
from sklearn.cluster import KMeans
|
6 |
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
|
@@ -8,13 +7,92 @@ import nltk
|
|
8 |
from nltk.corpus import stopwords
|
9 |
from nltk import FreqDist
|
10 |
import re
|
|
|
11 |
import base64
|
12 |
from graphviz import Digraph
|
13 |
from io import BytesIO
|
14 |
import networkx as nx
|
15 |
import matplotlib.pyplot as plt
|
16 |
|
17 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def get_txt_files():
|
20 |
# Exclude specific files
|
@@ -31,21 +109,84 @@ def get_txt_files():
|
|
31 |
|
32 |
return df
|
33 |
|
34 |
-
|
|
|
|
|
35 |
|
36 |
-
#
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
#
|
45 |
-
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
with open(file_path, 'r', encoding="utf-8") as file:
|
50 |
file_text = file.read()
|
51 |
|
@@ -106,4 +247,42 @@ if st.button(f"Process {selected_file}"):
|
|
106 |
|
107 |
plot_cluster_words(clustered_sentences)
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
st.markdown("For more information and updates, visit our [help page](https://huggingface.co/awacke1).")
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
3 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
from sklearn.cluster import KMeans
|
5 |
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
|
|
|
7 |
from nltk.corpus import stopwords
|
8 |
from nltk import FreqDist
|
9 |
import re
|
10 |
+
import os
|
11 |
import base64
|
12 |
from graphviz import Digraph
|
13 |
from io import BytesIO
|
14 |
import networkx as nx
|
15 |
import matplotlib.pyplot as plt
|
16 |
|
17 |
+
# Set page configuration with a title and favicon
|
18 |
+
st.set_page_config(
|
19 |
+
page_title="๐บTranscript๐EDA๐NLTK",
|
20 |
+
page_icon="๐ ",
|
21 |
+
layout="wide",
|
22 |
+
initial_sidebar_state="expanded",
|
23 |
+
menu_items={
|
24 |
+
'Get Help': 'https://huggingface.co/awacke1',
|
25 |
+
'Report a bug': "https://huggingface.co/awacke1",
|
26 |
+
'About': "https://huggingface.co/awacke1"
|
27 |
+
}
|
28 |
+
)
|
29 |
+
|
30 |
+
st.markdown('''
|
31 |
+
1. ๐ **Transcript Insights Using Exploratory Data Analysis (EDA)** ๐ - Unveil hidden patterns ๐ต๏ธโโ๏ธ and insights ๐ง in your transcripts. ๐.
|
32 |
+
2. ๐ **Natural Language Toolkit (NLTK)** ๐ ๏ธ:- your compass ๐งญ in the vast landscape of NLP.
|
33 |
+
3. ๐บ **Transcript Analysis** ๐:Speech recognition ๐๏ธ and thematic extraction ๐, audiovisual content to actionable insights ๐.
|
34 |
+
''')
|
35 |
+
|
36 |
+
# Download NLTK resources
|
37 |
+
nltk.download('punkt')
|
38 |
+
nltk.download('stopwords')
|
39 |
+
|
40 |
+
def remove_timestamps(text):
|
41 |
+
return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text)
|
42 |
+
|
43 |
+
def extract_high_information_words(text, top_n=10):
|
44 |
+
words = nltk.word_tokenize(text)
|
45 |
+
words = [word.lower() for word in words if word.isalpha()]
|
46 |
+
stop_words = set(stopwords.words('english'))
|
47 |
+
filtered_words = [word for word in words if word not in stop_words]
|
48 |
+
freq_dist = FreqDist(filtered_words)
|
49 |
+
return [word for word, _ in freq_dist.most_common(top_n)]
|
50 |
+
|
51 |
+
def create_relationship_graph(words):
|
52 |
+
graph = Digraph()
|
53 |
+
for index, word in enumerate(words):
|
54 |
+
graph.node(str(index), word)
|
55 |
+
if index > 0:
|
56 |
+
graph.edge(str(index - 1), str(index), label=word) # Add word as edge label
|
57 |
+
return graph
|
58 |
+
|
59 |
+
def display_relationship_graph(words):
|
60 |
+
graph = create_relationship_graph(words)
|
61 |
+
st.graphviz_chart(graph)
|
62 |
+
|
63 |
+
def extract_context_words(text, high_information_words):
|
64 |
+
words = nltk.word_tokenize(text)
|
65 |
+
context_words = []
|
66 |
+
for index, word in enumerate(words):
|
67 |
+
if word.lower() in high_information_words:
|
68 |
+
before_word = words[index - 1] if index > 0 else None
|
69 |
+
after_word = words[index + 1] if index < len(words) - 1 else None
|
70 |
+
context_words.append((before_word, word, after_word))
|
71 |
+
return context_words
|
72 |
+
|
73 |
+
def create_context_graph(context_words):
|
74 |
+
graph = Digraph()
|
75 |
+
for index, (before_word, high_info_word, after_word) in enumerate(context_words):
|
76 |
+
if before_word:
|
77 |
+
graph.node(f'before{index}', before_word, shape='box')
|
78 |
+
graph.node(f'high{index}', high_info_word, shape='ellipse')
|
79 |
+
if after_word:
|
80 |
+
graph.node(f'after{index}', after_word, shape='diamond')
|
81 |
+
if before_word:
|
82 |
+
graph.edge(f'before{index}', f'high{index}', label=before_word) # Add before_word as edge label
|
83 |
+
if after_word:
|
84 |
+
graph.edge(f'high{index}', f'after{index}', label=after_word) # Add after_word as edge label
|
85 |
+
return graph
|
86 |
+
|
87 |
+
def display_context_graph(context_words):
|
88 |
+
graph = create_context_graph(context_words)
|
89 |
+
st.graphviz_chart(graph)
|
90 |
+
|
91 |
+
def display_context_table(context_words):
|
92 |
+
table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n"
|
93 |
+
for before, high, after in context_words:
|
94 |
+
table += f"| {before if before else ''} | {high} | {after if after else ''} |\n"
|
95 |
+
st.markdown(table)
|
96 |
|
97 |
def get_txt_files():
|
98 |
# Exclude specific files
|
|
|
109 |
|
110 |
return df
|
111 |
|
112 |
+
def cluster_sentences(sentences, num_clusters):
|
113 |
+
# Filter sentences with length over 10 characters
|
114 |
+
sentences = [sentence for sentence in sentences if len(sentence) > 10]
|
115 |
|
116 |
+
# Check if the number of sentences is less than the desired number of clusters
|
117 |
+
if len(sentences) < num_clusters:
|
118 |
+
# If so, adjust the number of clusters to match the number of sentences
|
119 |
+
num_clusters = len(sentences)
|
120 |
|
121 |
+
# Vectorize the sentences
|
122 |
+
vectorizer = TfidfVectorizer()
|
123 |
+
X = vectorizer.fit_transform(sentences)
|
124 |
+
|
125 |
+
# Perform k-means clustering
|
126 |
+
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
|
127 |
+
kmeans.fit(X)
|
128 |
+
|
129 |
+
# Calculate the centroid of each cluster
|
130 |
+
cluster_centers = kmeans.cluster_centers_
|
131 |
|
132 |
+
# Group sentences by cluster and calculate similarity to centroid
|
133 |
+
clustered_sentences = [[] for _ in range(num_clusters)]
|
134 |
+
for i, label in enumerate(kmeans.labels_):
|
135 |
+
similarity = linear_kernel(cluster_centers[label:label+1], X[i:i+1]).flatten()[0]
|
136 |
+
clustered_sentences[label].append((similarity, sentences[i]))
|
137 |
|
138 |
+
# Order sentences within each cluster based on their similarity to the centroid
|
139 |
+
for cluster in clustered_sentences:
|
140 |
+
cluster.sort(reverse=True) # Sort based on similarity (descending order)
|
141 |
+
|
142 |
+
# Return the ordered clustered sentences without similarity scores for display
|
143 |
+
return [[sentence for _, sentence in cluster] for cluster in clustered_sentences]
|
144 |
+
|
145 |
+
def get_text_file_download_link(text_to_download, filename='Output.txt', button_label="๐พ Save"):
|
146 |
+
buffer = BytesIO()
|
147 |
+
buffer.write(text_to_download.encode())
|
148 |
+
buffer.seek(0)
|
149 |
+
b64 = base64.b64encode(buffer.read()).decode()
|
150 |
+
href = f'<a href="data:file/txt;base64,{b64}" download="{filename}" style="margin-top:20px;">{button_label}</a>'
|
151 |
+
return href
|
152 |
+
|
153 |
+
def get_high_info_words_per_cluster(cluster_sentences, num_words=5):
|
154 |
+
cluster_high_info_words = []
|
155 |
+
for cluster in cluster_sentences:
|
156 |
+
cluster_text = " ".join(cluster)
|
157 |
+
high_info_words = extract_high_information_words(cluster_text, num_words)
|
158 |
+
cluster_high_info_words.append(high_info_words)
|
159 |
+
return cluster_high_info_words
|
160 |
+
|
161 |
+
def plot_cluster_words(cluster_sentences):
|
162 |
+
for i, cluster in enumerate(cluster_sentences):
|
163 |
+
cluster_text = " ".join(cluster)
|
164 |
+
words = re.findall(r'\b[a-z]{4,}\b', cluster_text)
|
165 |
+
word_freq = FreqDist(words)
|
166 |
+
top_words = [word for word, _ in word_freq.most_common(20)]
|
167 |
+
|
168 |
+
vectorizer = TfidfVectorizer()
|
169 |
+
X = vectorizer.fit_transform(top_words)
|
170 |
+
word_vectors = X.toarray()
|
171 |
+
|
172 |
+
similarity_matrix = cosine_similarity(word_vectors)
|
173 |
+
|
174 |
+
G = nx.from_numpy_array(similarity_matrix)
|
175 |
+
pos = nx.spring_layout(G, k=0.5)
|
176 |
+
|
177 |
+
plt.figure(figsize=(8, 6))
|
178 |
+
nx.draw_networkx(G, pos, node_size=500, font_size=12, font_weight='bold', with_labels=True, labels={i: word for i, word in enumerate(top_words)}, node_color='skyblue', edge_color='gray') # Add word labels to nodes
|
179 |
+
plt.axis('off')
|
180 |
+
plt.title(f"Cluster {i+1} Word Arrangement")
|
181 |
+
|
182 |
+
st.pyplot(plt)
|
183 |
+
|
184 |
+
st.markdown(f"**Cluster {i+1} Details:**")
|
185 |
+
st.markdown(f"Top Words: {', '.join(top_words)}")
|
186 |
+
st.markdown(f"Number of Sentences: {len(cluster)}")
|
187 |
+
st.markdown("---")
|
188 |
+
|
189 |
+
def process_file(file_path):
|
190 |
with open(file_path, 'r', encoding="utf-8") as file:
|
191 |
file_text = file.read()
|
192 |
|
|
|
247 |
|
248 |
plot_cluster_words(clustered_sentences)
|
249 |
|
250 |
+
# Main code for UI
|
251 |
+
st.title("๐บ Transcript Analysis ๐")
|
252 |
+
|
253 |
+
# Display dataframe of .txt files
|
254 |
+
txt_files_df = get_txt_files()
|
255 |
+
st.write("Available .txt files:")
|
256 |
+
|
257 |
+
# Use st.empty() to create a placeholder for the DataFrame
|
258 |
+
df_placeholder = st.empty()
|
259 |
+
|
260 |
+
# Display the DataFrame and get the selected indices
|
261 |
+
selected_indices = df_placeholder.data_editor(
|
262 |
+
txt_files_df,
|
263 |
+
hide_index=True,
|
264 |
+
key="file_selector"
|
265 |
+
)
|
266 |
+
|
267 |
+
# Initialize session state for selected file if it doesn't exist
|
268 |
+
if 'selected_file' not in st.session_state:
|
269 |
+
st.session_state.selected_file = None
|
270 |
+
|
271 |
+
# Check if a new row is selected
|
272 |
+
if selected_indices:
|
273 |
+
selected_index = list(selected_indices.keys())[0]
|
274 |
+
selected_file = txt_files_df.iloc[selected_index]['File Name']
|
275 |
+
|
276 |
+
# Update session state only if a new file is selected
|
277 |
+
if st.session_state.selected_file != selected_file:
|
278 |
+
st.session_state.selected_file = selected_file
|
279 |
+
st.experimental_rerun()
|
280 |
+
|
281 |
+
# Display the selected file and process button
|
282 |
+
if st.session_state.selected_file:
|
283 |
+
st.write(f"Selected file: {st.session_state.selected_file}")
|
284 |
+
if st.button(f"Process {st.session_state.selected_file}"):
|
285 |
+
file_path = txt_files_df[txt_files_df['File Name'] == st.session_state.selected_file]['Full Path'].iloc[0]
|
286 |
+
process_file(file_path)
|
287 |
+
|
288 |
st.markdown("For more information and updates, visit our [help page](https://huggingface.co/awacke1).")
|