|
# Model scoring |
|
|
|
This folder contains code to test UniDisc under various configurations/checkpoints. Specifically, we generate a set of images and captions including masks for each, and then call the server under various configurations. We use a set of reward models from `model_eval.py` to score each output. |
|
|
|
Here is an example workflow: |
|
|
|
```bash |
|
uv run demo/scoring/generate_input.py input/v1 --num_pairs 500 --mask_txt --mask_img |
|
|
|
uv run demo/scoring/call_model.py --input_dir input/v1 --output_dir generated/v1 --num_pairs 200 --iterate_over_modes |
|
|
|
uv run accelerate launch --main_process_port $RANDOM demo/scoring/generate_rewards.py --input_dir generated/v1 --output_file rewards_v1.json --batch_size 32 |
|
|
|
uv run demo/scoring/analyze_rewards.py rewards_v1.json --save_image |
|
``` |