|
import streamlit as st |
|
import pandas as pd |
|
import tempfile |
|
import os |
|
import json |
|
from pathlib import Path |
|
|
|
from langchain.schema import Document |
|
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.chains import RetrievalQAWithSourcesChain |
|
from langchain import HuggingFacePipeline |
|
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png" |
|
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg" |
|
CHAT_HISTORY_FILE = Path("chat_memory.json") |
|
|
|
def load_chat_history(): |
|
if CHAT_HISTORY_FILE.exists(): |
|
with open(CHAT_HISTORY_FILE, "r") as f: |
|
return json.load(f) |
|
return [] |
|
|
|
def save_chat_history(history): |
|
with open(CHAT_HISTORY_FILE, "w") as f: |
|
json.dump(history, f) |
|
|
|
def preprocess_excel(file_path: str) -> pd.DataFrame: |
|
df_raw = pd.read_excel(file_path, sheet_name='Data Base', header=None) |
|
df = df_raw.iloc[4:].copy() |
|
df.columns = df.iloc[0] |
|
df = df[1:] |
|
df.dropna(how='all', inplace=True) |
|
df.dropna(axis=1, how='all', inplace=True) |
|
df.reset_index(drop=True, inplace=True) |
|
df.columns = df.columns.astype(str) |
|
return df |
|
|
|
def build_vectorstore_from_structured_records(df: pd.DataFrame): |
|
df.fillna("", inplace=True) |
|
records = [] |
|
for i, row in df.iterrows(): |
|
item_class = str(row.get("Item Class", "")).strip() |
|
job_done = str(row.get("Job Done", "")).strip() |
|
backlog = str(row.get("Backlog?", "")).strip() |
|
days = str(row.get("Days in Backlog", "")).strip() |
|
if not any([item_class, job_done, backlog, days]): |
|
continue |
|
sentence = f"Item Class {item_class} has status {job_done}, is in {backlog} backlog, and has {days} days." |
|
records.append(Document(page_content=sentence, metadata={"source": f"Row {i+1}"})) |
|
|
|
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150) |
|
split_docs = splitter.split_documents(records) |
|
|
|
embeddings = HuggingFaceEmbeddings( |
|
model_name="sentence-transformers/all-MiniLM-l6-v2", |
|
model_kwargs={"device": "cpu"}, |
|
encode_kwargs={"normalize_embeddings": False} |
|
) |
|
vectorstore = FAISS.from_documents(split_docs, embeddings) |
|
return vectorstore |
|
|
|
def create_qa_pipeline(vectorstore): |
|
model_id = "google/flan-t5-base" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_id) |
|
gen_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer, max_length=512) |
|
llm = HuggingFacePipeline(pipeline=gen_pipeline) |
|
retriever = vectorstore.as_retriever() |
|
qa = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=retriever) |
|
return qa |
|
|
|
st.set_page_config(page_title="Excel-Aware RAG Chatbot", layout="wide") |
|
st.title("π Excel-Aware RAG Chatbot (Structured QA)") |
|
|
|
with st.sidebar: |
|
uploaded_file = st.file_uploader("Upload your Excel file (.xlsx or .xlsm with 'Data Base' sheet)", type=["xlsx", "xlsm"]) |
|
if st.button("ποΈ Clear Chat History"): |
|
st.session_state.chat_history = [] |
|
if CHAT_HISTORY_FILE.exists(): |
|
CHAT_HISTORY_FILE.unlink() |
|
st.rerun() |
|
|
|
if "chat_history" not in st.session_state: |
|
st.session_state.chat_history = load_chat_history() |
|
|
|
if uploaded_file is not None: |
|
with st.spinner("Processing and indexing your Excel sheet..."): |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsm") as tmp_file: |
|
tmp_file.write(uploaded_file.read()) |
|
tmp_path = tmp_file.name |
|
|
|
try: |
|
df = preprocess_excel(tmp_path) |
|
vectorstore = build_vectorstore_from_structured_records(df) |
|
qa = create_qa_pipeline(vectorstore) |
|
st.success("β
File processed and chatbot ready! Ask your questions below.") |
|
except Exception as e: |
|
st.error(f"β Error processing file: {e}") |
|
finally: |
|
os.remove(tmp_path) |
|
|
|
for message in st.session_state.chat_history: |
|
st.chat_message(message["role"], avatar=USER_AVATAR if message["role"] == "user" else BOT_AVATAR).markdown(message["content"]) |
|
|
|
user_prompt = st.chat_input("Ask about item classes, backlog, or status...") |
|
|
|
if user_prompt: |
|
st.session_state.chat_history.append({"role": "user", "content": user_prompt}) |
|
st.chat_message("user", avatar=USER_AVATAR).markdown(user_prompt) |
|
|
|
with st.chat_message("assistant", avatar=BOT_AVATAR): |
|
with st.spinner("Thinking..."): |
|
try: |
|
response = qa.invoke({"question": user_prompt}) |
|
final_response = response['answer'] |
|
sources = response.get('sources', '') |
|
placeholder = st.empty() |
|
streamed = "" |
|
for word in final_response.split(): |
|
streamed += word + " " |
|
placeholder.markdown(streamed + "β") |
|
placeholder.markdown(f"**{final_response.strip()}**") |
|
if sources: |
|
st.markdown(f"<sub>π <i>{sources}</i></sub>", unsafe_allow_html=True) |
|
st.session_state.chat_history.append({"role": "assistant", "content": final_response}) |
|
save_chat_history(st.session_state.chat_history) |
|
except Exception as e: |
|
st.error(f"β Error: {e}") |
|
else: |
|
st.info("Upload a file on the left to get started.") |