RAG / app.py
amiguel's picture
Update app.py
a4869da verified
import streamlit as st
import pandas as pd
import tempfile
import os
import json
from pathlib import Path
from langchain.schema import Document
#from langchain.document_loaders import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQAWithSourcesChain
from langchain import HuggingFacePipeline
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png"
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg"
CHAT_HISTORY_FILE = Path("chat_memory.json")
def load_chat_history():
if CHAT_HISTORY_FILE.exists():
with open(CHAT_HISTORY_FILE, "r") as f:
return json.load(f)
return []
def save_chat_history(history):
with open(CHAT_HISTORY_FILE, "w") as f:
json.dump(history, f)
def preprocess_excel(file_path: str) -> pd.DataFrame:
df_raw = pd.read_excel(file_path, sheet_name='Data Base', header=None)
df = df_raw.iloc[4:].copy()
df.columns = df.iloc[0]
df = df[1:]
df.dropna(how='all', inplace=True)
df.dropna(axis=1, how='all', inplace=True)
df.reset_index(drop=True, inplace=True)
df.columns = df.columns.astype(str)
return df
def build_vectorstore_from_structured_records(df: pd.DataFrame):
df.fillna("", inplace=True)
records = []
for i, row in df.iterrows():
item_class = str(row.get("Item Class", "")).strip()
job_done = str(row.get("Job Done", "")).strip()
backlog = str(row.get("Backlog?", "")).strip()
days = str(row.get("Days in Backlog", "")).strip()
if not any([item_class, job_done, backlog, days]):
continue
sentence = f"Item Class {item_class} has status {job_done}, is in {backlog} backlog, and has {days} days."
records.append(Document(page_content=sentence, metadata={"source": f"Row {i+1}"}))
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
split_docs = splitter.split_documents(records)
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-l6-v2",
model_kwargs={"device": "cpu"},
encode_kwargs={"normalize_embeddings": False}
)
vectorstore = FAISS.from_documents(split_docs, embeddings)
return vectorstore
def create_qa_pipeline(vectorstore):
model_id = "google/flan-t5-base"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
gen_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer, max_length=512)
llm = HuggingFacePipeline(pipeline=gen_pipeline)
retriever = vectorstore.as_retriever()
qa = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=retriever)
return qa
st.set_page_config(page_title="Excel-Aware RAG Chatbot", layout="wide")
st.title("πŸ“Š Excel-Aware RAG Chatbot (Structured QA)")
with st.sidebar:
uploaded_file = st.file_uploader("Upload your Excel file (.xlsx or .xlsm with 'Data Base' sheet)", type=["xlsx", "xlsm"])
if st.button("πŸ—‘οΈ Clear Chat History"):
st.session_state.chat_history = []
if CHAT_HISTORY_FILE.exists():
CHAT_HISTORY_FILE.unlink()
st.rerun()
if "chat_history" not in st.session_state:
st.session_state.chat_history = load_chat_history()
if uploaded_file is not None:
with st.spinner("Processing and indexing your Excel sheet..."):
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsm") as tmp_file:
tmp_file.write(uploaded_file.read())
tmp_path = tmp_file.name
try:
df = preprocess_excel(tmp_path)
vectorstore = build_vectorstore_from_structured_records(df)
qa = create_qa_pipeline(vectorstore)
st.success("βœ… File processed and chatbot ready! Ask your questions below.")
except Exception as e:
st.error(f"❌ Error processing file: {e}")
finally:
os.remove(tmp_path)
for message in st.session_state.chat_history:
st.chat_message(message["role"], avatar=USER_AVATAR if message["role"] == "user" else BOT_AVATAR).markdown(message["content"])
user_prompt = st.chat_input("Ask about item classes, backlog, or status...")
if user_prompt:
st.session_state.chat_history.append({"role": "user", "content": user_prompt})
st.chat_message("user", avatar=USER_AVATAR).markdown(user_prompt)
with st.chat_message("assistant", avatar=BOT_AVATAR):
with st.spinner("Thinking..."):
try:
response = qa.invoke({"question": user_prompt})
final_response = response['answer']
sources = response.get('sources', '')
placeholder = st.empty()
streamed = ""
for word in final_response.split():
streamed += word + " "
placeholder.markdown(streamed + "β–Œ")
placeholder.markdown(f"**{final_response.strip()}**")
if sources:
st.markdown(f"<sub>πŸ“Ž <i>{sources}</i></sub>", unsafe_allow_html=True)
st.session_state.chat_history.append({"role": "assistant", "content": final_response})
save_chat_history(st.session_state.chat_history)
except Exception as e:
st.error(f"❌ Error: {e}")
else:
st.info("Upload a file on the left to get started.")